An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM
-
摘要:
为了预测非均匀地应力条件下不居中套管的最大应力,提高套管安全性,研究了基于支持向量机(SVM)的套管最大von Mises应力预测方法。首先确定了影响套管最大应力的关键因素,包括非均匀地应力、水泥环的弹性模量及泊松比、套管偏心距等8个因素;然后利用ANSYS软件构建了套管应力实验样本;最后建立了
ε−SVR 模型,实现了套管最大应力的预测。通过自学习,基于径向基核函数的SVM回归方法对于训练样本达到了很好的精度,5个测试样本的平均相对误差仅为1.32%,具有较好的预测精度,满足工程需求,且可以实现非均匀地应力条件下不居中套管最大应力的快速求解。研究结果为现场安全施工提供了理论依据。-
关键词:
- 支持向量机 /
- 非均匀地应力 /
- 套管偏心距 /
- von Mises应力
Abstract:In order to predict the maximum stress of uncentered casing under non-uniform in-situ stress and improve the safety of casing, a prediction method of casing’s maximum von Mises stress based on artificial intelligence SVM is studied. First, the key factors affecting the maximum stress of casing are determined, including non-uniform geologic stress, elastic modulus and Poisson's ratio of cement sheath, eccentricity of casing, etc. Then the "experimental" samples of casing stress are constructed by using ANSYS software. Finally the
ε−SVR model is established to realize the prediction of casing’s maximum stress. Through self-learning, the SVM regression method based on RBF kernel achieves good accuracy for training samples. For the five test samples, the average relative error is only 1.32%, which means that this method can meet the needs of engineering application. In particular, this method can be used to quickly solve the maximum stress of uncentered casing under non-uniform in-situ stress.The research results provide theoretical basis for site safety construction. -
顺北油田顺托果勒低隆起以走滑断裂体系为主,沿走滑断裂发育大量非暴露岩溶缝洞型储层,此类由断裂带控制的油气储层简称为断溶体储层[1-3]。S井是位于顺托果勒低隆起顺北Ⅳ号断裂带奥陶系一间房组—鹰山组的一口重点风险探井,采用裸眼完井,完钻井深8 270.00 m,未直接钻遇断溶体。改造裸眼段井径120.7 mm,段长达493.00 m。目前国内碳酸盐岩储层温度普遍为120~160 ℃、井深4 000.00~7 000.00 m,主要采用深度酸压工艺进行储层改造[4-6]。通过深度酸压造缝,利用强导流能力的酸压长裂缝深度沟通多个断溶储集体、改善断裂带内储层连通性,是此类储层实现建产、增产的关键[7-9]。但S井断溶体储层埋深更深(8 270.00 m)、温度更高(182 ℃)、井筒条件更复杂、目标地质体刻画不清晰,深度酸压改造面临巨大挑战和风险,主要表现为储层难以压开、目标体精准改造难度大和远距离高导流酸压裂缝形成难度大,导致储层酸压改造后产量低且递减快,难以实现经济有效开发。为此,笔者在深入剖析储层地质特征、井筒条件和酸压改造技术难点的基础上,以长效连通断溶储集体、改善断裂带内连通性为目标,进行了管柱优化、工作液体系优选和酸压规模优化等方面技术研究,形成了S井大型酸压方案,S井顺利完成了酸压施工,取得了较好的增产效果。
1. 储层地质特征
S井邻近主要发育F2、F3-1号断裂及1套强反射储集体,但与目的层段井眼距离较远,距F3-1号断裂370~390 m,距F2号断裂50~150 m,距强反射储集体180 m,钻井过程中未钻遇断裂带和有利储集体,目的层电阻率限幅特征明显,岩性较致密。一间房组7 841.00~7 868.50 m井段为相对有利储层段,7 841.00~7 842.00 m井段为Ⅱ类储层,仅发育单条或数条中高角度裂缝;7 844.00~7 868.50 m井段为Ⅲ类储层,伴有一定天然缝,但主要以诱导缝为主;鹰山组8 000.00~8 100.00 m和8 200.00~8 270.00 m井段有微小裂缝发育。储层裂缝发育程度较低,吸液能力有限[10-11]。7 777.00~7 900.00 m井段井眼不规则,无法判定主地应力方向;8 020.00~8 070.00 m与8 147.00~8 174.00 m井段的最大主应力方向为北西–南东向(见图1)。由于采用井眼崩落法预测最大水平主应力方向存在多解性[12-13],酸压裂缝能否沟通断溶体存在不确定性。同时,由于井斜角较大(18°)、井眼尺寸较小,存在钻具压迫一侧井壁形成椭圆井眼的可能。
2. 酸压改造技术难点
S井未直接钻遇断裂带和有利储集体,完钻后无自然产能。通过酸压改造形成高导流长裂缝,实现沟通断裂带或有利储集体是该井建产的核心技术,也是目前工程地质条件下较为经济可行的技术手段。但该井工程地质特征和井筒条件复杂,酸压改造面临如下技术难点:
1)地层破裂压力高,采用常规压裂液体系难以直接压开地层和提升排量。储层深,裸眼段岩性致密,储层长时间(储层段钻井周期达172 d)受高密度钻井液(大于1.80 kg/L)浸泡、污染,吸液能力极低,导致破裂压力超高。测试压裂采用密度1.32 kg/L的盐水,最高排量2.0 m3/min,近井地层破裂,按照井口最高压力96 MPa计算地层破裂压力为183 MPa,破裂压力梯度为0.023 MPa/m。主体酸压过程中,密度1.0 kg/L的常规压裂液以2.0 m3/min排量注入,井口压力达122 MPa,超过井口限压。
2)长裸眼段分段改造受限,目标体精准改造难度大。目标层油气储集体空间展布与应力场的匹配关系认识不清,造成酸压裂缝沟通方向、距离不明确;裸眼段长达493.00 m,存在多点进液、多点起裂的可能,会影响造长缝的效率,无法沟通远距离断溶体;受井筒条件复杂、部分套管磨损严重、地质条件严苛和施工风险较高等因素影响,现有机械分段酸压、连续油管水力喷射分段酸压等“硬分层”酸压技术[14-15],以及纤维+颗粒复合暂堵转向“软分层”酸压技术[16-17]均无法有效实施。
3)远距离高导流裂缝造缝难度大。S井储层埋藏深,破裂压力高,难以压开,裂缝延伸压力大。同时,套管长期磨损,壁面承压受限,大排量注液将增加井底与环空压差,封隔器存在解封风险。受储层温度超高与裂缝较窄的双重影响,酸岩反应速率快,酸液有效作用距离短。储层埋藏深,闭合压力较高,高闭合压力下导流能力低且保持困难,难以实现酸压裂缝长期有效沟通。此外,高温压裂液、酸液等工作液也需要具有较好的耐温性能。
3. 大型酸压方案设计
3.1 酸压技术对策
针对上述技术难点,在现有工程技术条件下,为实现S井安全高效酸压,制定了如下措施:
1)压开储层,建立施工排量。首先低排量注入滑溜水,将高密度完井液挤入地层,降低井筒温度,防止酸液在高温下对施工管柱的快速腐蚀,保障施工安全;随后采用酸损伤技术[18-19],注入低黏酸液,溶蚀近井钻井液污染带,增加地层吸液能力,降低破裂压力;待排量充分建立后,依次注入加重压裂液、超高温压裂液,压开地层造长缝。
2)集中改造有利储层段,提高液体造长缝效率。储层最大水平主应力方向为北西–南东向,与有利储集体展布方向基本匹配,具备精准沟通储集体的可行性(见图1)。为克服酸压沟通储集体的不确定性,缩短改造井段,集中高强度改造有利井段。采用水泥回填,封堵下部7 950.00~8 270.00 m井段,对上部7 777.00~7 950.00 m井段(裸眼段缩短至173.00 m)进行大规模、大排量酸压改造,确保有利储层段(7 841.00~7 868.5.00m)集中进液造长缝,提高液体造缝效率。
3)优化液体性能、组合及规模,最大化沟通远井储集体。优选顺北区块成熟耐高温酸液、压裂液体系,保证施工安全有效。造缝阶段采用加重压裂液+压裂液+滑溜水的前置液组合,加重压裂液有利于提升施工排量,压裂液、滑溜水可降温、降滤,有利于形成深穿透水力裂缝,沟通储集体。酸刻蚀阶段采用压裂液+交联酸、压裂液+自生酸+交联酸基液两级组合注入模式,利用压裂液降滤,增加酸液有效作用距离,改善酸蚀裂缝导流能力;自生酸具有随温度升高生酸的特性,可疏通位于裂缝远端的断溶体内部缝洞网络,改善流体在断溶体内部的渗流能力,最终形成连接井筒和储集体的高导流通道。利用现有酸压模型,基于液体性能、沟通目标距离优化注液规模,充分发挥液体性能。
3.2 酸压设计
3.2.1 超高温工作液体系
3.2.1.1 超高温压裂液体系
压开地层时,考虑前期滑溜水和酸液对地层的降温效应,优选耐160 ℃加重压裂液体系,其配方为0.55%超级胍胶BFC-10+0.30%pH调节剂+0.50%硫代硫酸钠+0.50%高温助排剂BZP-3+0.50%破乳剂BZP-07+0.40%交联剂GC-18+14.00%NaCl。加重压裂液密度1.10 kg/L,在160 ℃、170 s–1条件下剪切140 min后,黏度保持在100 mPa·s以上(见图2);在酸化后的低黏酸(密度1.00 kg/L)中注入加重压裂液,密度差异可引起静液柱压力差异,预计施工压力可降低7.8 MPa。
裂缝延伸时,考虑深部地层温度仍高达182 ℃,优选温控交联聚合物压裂液体系,延长压裂液在井筒中的交联时间,降低泵送难度,其配方为0.6%聚合物稠化剂BFC-200+1.0%高温助排剂BZP-3+0.5%高温破乳剂BZP-07+1.2%耐温增强剂JX-HT+0.25%破胶剂NOB-100+1.2%交联剂JX-JL-1。流变测试结果表明, 180 ℃、170 s–1条件下剪切140 min,压裂液体系交联前黏度保持在40~50 mPa·s,温度达80~90 ℃后开始交联,交联后黏度保持在50~130 mPa·s,满足高温造缝要求(见图2)。
3.2.1.2 超高温交联酸体系
选用耐超高温交联酸体系,其配方为20%HCl+0.8%稠化剂ECA-1+3.2%缓蚀剂EEH-180+0.8%缓蚀增效剂EEH-ZX+1.0%铁离子稳定剂EET+1.0%破乳剂EEP+交联剂ECC-180(交联比为100∶2)+0.02%破胶剂EAB。加入交联剂后52 s交联完成,基液黏度63 mPa·s,延迟交联性能好,利于泵送;160 ℃、170 s–1条件下剪切70 min,酸液体系最低黏度为53 mPa·s,耐温耐剪切性能较好(见图3);采用P110(S)钢片,测定160 ℃、60 r/min条件下酸液体系4 h的平均动态腐蚀速率为13.62 g/(m2·h),钢片上仅有细小点蚀,可确保酸压过程中的管柱安全。
3.2.1.3 缓速自生酸体系
为改造裂缝远端断溶储集体,选择了生酸及缓速性能较好的自生酸体系,其配方为49.25%A剂+49.25%B剂+0.5%高温缓蚀剂+0.5%铁离子稳定剂+0.5%破乳剂。试验结果表明,酸浓度随温度升高逐渐增加,最高可达15%(见图4);4种酸液体系经长时间酸岩反应后,120~240 min内自生酸体系的酸浓度较高,有利于裂缝远端储层的溶蚀改造(见图5)。
3.2.2 酸压规模
结合现有压裂软件和酸压模型[20],模拟不同酸压规模下的酸压裂缝长度,推荐酸压规模。
采用软件模拟不同注液排量、总注液规模对酸压动态裂缝长度的影响。模拟结果表明,3种注液排量下,随液体规模增加,酸压动态裂缝缝长均有一定程度增加,液量大于3 000 m3时,裂缝长度增长幅度减小,推荐总注液规模3 000~3 500 m3。同时,注液规模不变,排量提升,酸压裂缝长度明显增加。因此,在考虑施工限压条件下,最大化提升注液排量,有利于裂缝延伸沟通远距离断溶体(见图6)。
S井所处储层温度高达180 ℃,需采取合适的降温措施,延缓酸岩反应速率,考虑酸岩反应对裂缝温度影响,模拟裂缝温度场[21],分析前置液降温效果,推荐前置液规模(见图7)。当注液规模大于1 000 m3后,前置液对裂缝的降温效果逐渐减缓,因此,推荐前置液规模1 000~1 200 m3。
为形成高导流能力的长缝,交替注入压裂液、交联酸及自生酸,采用酸压模型模拟酸液有效作用距离,根据模拟结果推荐3种液体的规模。交联酸总规模达800 m3以后,酸液有效作用距离增长放缓,推荐交联酸注酸规模为800~1 000 m3(见图8)。借鉴顺北1、5号断裂酸压改造经验,以体积比1∶1二级交替注入压裂液与交联酸,压裂液规模为800~1 000 m3。自生酸对酸液有效作用距离提升有一定作用,自生酸规模大于200 m3后,酸液有效作用距离超过150 m,且增加速度逐渐放缓,因此,建议自生酸规模200~400 m3(见图9)。
4. 现场应用效果
S井采用根据上述酸压方案设计的参数进行大型酸压施工,施工排量0.5~8.0 m3/min,施工压力27.7~119.8 MPa,累计注入液量3 070 m3(其中滑溜水1 000 m3、压裂液700 m3、加重压裂液300 m3、交联酸830 m3、自生酸240 m3),停泵60 min,停泵压力82~78 MPa。大型酸压施工顺利实施,刷新了顺北特深井大型酸压改造纪录。结合施工全过程压力曲线,分析酸压实施效果(见图10)。
1)浅下管柱施工压力显著降低。实际浅下油管长度为6 900 m,比常规方式下入油管长度短770 m。5000~6900 m井段采用了ϕ88.9 mm油管,计算该油管柱在3~10 m3/min施工排量下的摩阻降低幅度,结果见表1。由表1可看出,采用浅下管柱摩阻降低2.4~11.5 MPa,且大排量注液条件下,浅下管柱降低摩阻的效果更为显著。
表 1 不同注压裂液排量下浅下管柱摩阻减小值Table 1. Friction reduction of shallow pipe string under different fracturing fluid injection rates排量/
(m3·min-1)ϕ88.9 mm油管摩阻系数/
(MPa·m-1)浅下管柱减小摩阻/
MPa3 0.003 2.4 4 0.005 3.8 5 0.007 5.3 6 0.008 6.2 7 0.013 9.9 8 0.015 11.5 2)加重压裂液降低施工压力效果明显。加重压裂液可通过增大密度提高井筒液柱压力,在相同注液排量下,注加重压裂液时的井口压力与注聚合物压裂液相比低了7.8 MPa,降低了7%,降压力效果明显。
3)交联酸溶蚀储层,有效降低了施工压力。施工初期泵入低黏交联酸基液,施工压力由114 MPa降至92 MPa,吸酸压力梯度由0.0219 MPa/m降至0.0190 MPa/m,表明酸损伤后地层吸液能力明显改善;此后施工排量维持在5.5~8.0 m3/min,排量提升效果明显;后续大排量注入工作液,施工压力维持在120 MPa限压以内,裂缝逐渐延伸;2次交联酸的注入均降低了施工压力,裂缝导流能力得到明显改善。
4)自生酸溶蚀储层,实现远端储层沟通。正挤自生酸阶段,首先以6 m3/min排量顶替前阶段聚合物压裂液进入地层,10 min后自生酸开始接触地层;随后自生酸排量降低至5.5 m3/min,稳定排量注入8 min。18 min内施工压力由110 MPa增至116.4 MPa,自生酸推动压裂液延伸裂缝,此阶段自生酸反应能力较弱。自生酸与碳酸盐岩反应时间越长、反应温度越高,其酸浓度越高。以5.5 m3/min排量继续注入26 min后,由于自生酸具备了较强反应能力,岩石力学强度随之降低,施工压力降低13.7 MPa,促进了有利储集体的沟通,说明自生酸具有延迟反应功能,能够溶蚀并沟通远端储层。
5. 结论与建议
1)针对S井超深超高温断溶体储层大型酸压技术难点,以“回填井段集中改造+酸损伤降破+管柱浅下+加重压裂液组合提排量+前置液造缝+交替注入造高导流裂缝+自生酸疏通远端断溶体”为核心思路的复合酸压技术,可远距离沟通断溶体储层,并建立稳定导流能力。
2)S井断溶体储层大型酸压的顺利实施,为顺北区块断溶体储层大型酸压积累了经验,但改造井段有待进一步缩短,以提高液体造长缝效率。
3)超深断溶体储层空间展布与地应力方向认识尚未明确,应进一步研究并精细刻画目标地质体与地应力空间展布、井筒质量、酸压规模、施工参数和酸压材料等的匹配关系,实现有利储集体的精准、高效靶向改造。
-
表 1 主要影响因素及取值范围
Table 1 Main influencing factors and range of values
影响因素 取值范围 最大水平主应力σH/MPa 80~135 最小水平主应力σh/MPa 30~80 钻井液密度ρf/(kg∙L–1) 1.15~2.05 水泥环的弹性模量Ec/GPa 10~60 水泥环的泊松比μc 0.15~0.35 地层的弹性模量Es/GPa 1~30 地层的泊松比μs 0.10~0.30 套管偏心距δ/mm 1.5~25.7 表 2 SVM“实验样本”数据
Table 2 Data of the SVM “experimental samples”
序号 ρf/(kg∙L–1) Ec/GPa μc Es/GPa μs σH/MPa σh/MPa δ/mm σv/MPa 1 1.73 35.00 0.26 15.70 0.25 55.00 107.50 25.7 642.24 2 1.48 38.57 0.18 25.91 0.23 40.71 123.21 1.5 766.62 3 1.48 38.57 0.18 25.91 0.23 40.71 123.21 11.2 768.59 4 1.23 38.57 0.18 17.74 0.31 37.14 80.00 1.5 458.83 5 1.48 20.71 0.32 25.91 0.23 51.43 127.14 20.8 754.53 6 1.48 38.57 0.18 25.91 0.23 40.71 123.21 6.3 767.72 7 1.48 20.71 0.32 25.91 0.23 51.43 127.14 11.2 754.29 8 2.05 42.14 0.35 23.87 0.16 65.71 111.43 1.5 487.51 9 1.73 35.00 0.26 9.57 0.40 51.43 127.14 25.7 1 008.85 10 1.81 27.86 0.17 7.53 0.34 44.29 103.57 1.5 835.23 … … … … … … … … … … 91 1.89 24.29 0.24 21.83 0.10 33.57 99.64 16.0 550.76 92 1.15 56.43 0.29 11.61 0.12 76.43 115.36 25.7 957.12 93 1.73 35.00 0.26 9.57 0.40 51.43 127.14 6.3 1 006.05 94 1.48 38.57 0.18 25.91 0.23 40.71 123.21 16.0 769.33 95 1.23 17.14 0.15 30.00 0.36 65.71 111.43 6.3 468.30 96 1.73 10.00 0.30 21.83 0.10 55.00 107.50 25.7 586.98 97 1.48 60.00 0.21 7.53 0.34 62.14 131.07 16.0 1 192.18 98 1.48 60.00 0.21 7.53 0.34 62.14 131.07 20.8 1 195.77 99 1.40 38.57 0.18 13.66 0.19 37.14 80.00 20.8 531.50 100 1.97 24.29 0.24 5.49 0.27 76.43 115.36 25.7 862.73 表 3 测试样本的预测结果
Table 3 Predictive effect of test samples
样本序号 模型参数 最大von Mises应力/MPa 绝对误差/MPa 相对误差,% 平均相对误差,% 样本值 预测值 96 σ=2.01
ε=0.01
C=3.00586.98 603.21 16.23 2.76 1.32 97 1 192.18 1 200.54 8.36 0.70 98 1 195.77 1 207.74 11.97 1.00 99 531.50 530.85 –0.65 –0.12 100 862.73 845.36 –17.37 –2.01 -
[1] American Petroleum Institute. API BULLETIN 5C3: bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties[S]. 1994-10-01.
[2] HAN J Z, SHI T H. Nonuniform loading affects casing collapse resistance[J]. Oil & Gas Journal, 2001, 99(25): 45–48.
[3] 李军, 陈勉, 柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023 LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
[4] 殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029 YIN Youquan, LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029
[5] 李国庆. 套管水泥环组合应力计算边界条件分析[J]. 石油钻探技术, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004 LI Guoqing. Analysis of boundary condition of stress calculation on casing/cement-sheath[J]. Petroleum Drilling Techniques, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004
[6] CHEN Zhanfeng, ZHU Weiping, DI Qinfeng. Elasticity solution for the casing under linear crustal stress[J]. Engineering Failure Analysis, 2018, 84: 185–195. doi: 10.1016/j.engfailanal.2017.11.007
[7] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026 LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
[8] 徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002 XU Shouyu, LI Maohua, NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002
[9] 李子丰,杨海军,陈飞. 蠕变性地层中套管有效外挤压力的计算方法探讨[J]. 石油钻探技术, 2014, 42(3): 13–15. LI Zifeng, YANG Haijun, CHEN Fei. The calculation of the effective external pressure on casing in creep formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 13–15.
[10] RODRIGUEZ W J, FLECKENSTEIN W W, EUSTES A W. Simulation of collapse loads on cemented casing using finite element analysis[R]. SPE 84566, 2003.
[11] PATTILLO P D, LAST N C, ASBILL W T. Effect of nonuniform loading on conventional casing collapse resistance[J]. SPE Drilling & Completion, 2004, 19(3): 156–163.
[12] NABIPOUR A, JOODI B, SARMADIVALEH M. Finite element simulation of downhole stresses in deep gas wells cements[R]. SPE 132156, 2010.
[13] 窦益华. 粘弹性围岩中套管与井眼不同心时套管围压分析[J]. 石油钻采工艺, 1989, 11(4): 1–6. DOU Yihua. Analysis of casing confining pressure when casing and borehole are not concentric in viscoelastic surrounding rock[J]. Oil Driling & Production Technology, 1989, 11(4): 1–6.
[14] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.
[15] CHEN Wei, DI Qinfeng, YE Feng, et al. Flowing bottomhole pressure prediction for gas wells based on support vector machine and random samples selection[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18333–18342. doi: 10.1016/j.ijhydene.2017.04.134
[16] 朱国强,刘士荣,俞金寿. 支持向量机及其在函数逼近中的应用[J]. 华东理工大学学报, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023 ZHU Guoqiang, LIU Shirong, YU Jinshou. Support vector machine and its applications to function approximation[J]. Journal of East China University of Science and Technology, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023
[17] 白鹏, 张喜斌, 张斌, 等.支持向量机理论及其工程应用实例[M].西安: 西安电子科技大学出版社, 2008: 53-56. BAI Peng, ZHANG Xibin, ZHANG Bin, et al. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an: Xidian University Press, 2008: 5-56.
[18] 成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J]. 计算机工程, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067 CHENG Peng, WANG Xili. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067
[19] 王国华,陈正茂,熊继有, 等. 非均匀载荷下套管偏心对套管强度影响研究[J]. 石油天然气学报, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025 WANG Guohua, CHEN Zhengmao, XIONG Jiyou, et al. The effect of casing eccentricity on the casing strength under non-uniformity load[J]. Journal of Oil and Gas Technology, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025
[20] 陈占锋,朱卫平,狄勤丰,等. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83–86. CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stresses[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(1): 83–86.
[21] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024 ZHAO Dean, CHEN Zhiming, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024
[22] 程文瀼.混凝土结构: 上册: 混凝土结构设计原理[M].北京: 中国建筑工业出版社, 2005: 15-17. CHENG Wenxiang. Concrete structure: part A: design principle of concrete structure[M]. Beijing: China Architecture & Building Press, 2005: 15-17.
-
期刊类型引用(7)
1. 王群一,马晓丽,蒋明洁,李丹,毕永斌,顾潇. 高地层倾角油藏高低部位油井液量配比研究. 科学技术与工程. 2024(02): 538-544 . 百度学术
2. 吴宽宽,冯其红,张先敏,孙红霞,于金彪,易红霞. 多层水驱油藏均衡驱替注采参数协同优化方法. 油气地质与采收率. 2023(05): 67-75 . 百度学术
3. 葛丽珍,孟智强,祝晓林,岳宝林,朱志强. 气顶边水油藏中后期开发调整三维物理模拟研究. 石油钻探技术. 2023(06): 85-92 . 本站查看
4. 张静,郑彬,李红英,刘玉娟,闫志明. 厚油层注采井间注入水纵向波及程度定量研究. 石油钻探技术. 2022(02): 118-125 . 本站查看
5. 葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 . 本站查看
6. 秦立峰,陈民锋,付世雄,荣金曦. 弹塑性油藏注采渗流场分布及储量有效动用规律. 油气地质与采收率. 2022(03): 128-136 . 百度学术
7. 赖书敏,赵文佳,苏建. 特高含水后期层系井网及注采优化方法与应用——以S油田T块为例. 天然气与石油. 2022(03): 56-61 . 百度学术
其他类型引用(2)