川深1井超深井钻井提速关键技术

叶金龙, 沈建文, 吴玉君, 杜征鸿, 睢圣, 李林

叶金龙, 沈建文, 吴玉君, 杜征鸿, 睢圣, 李林. 川深1井超深井钻井提速关键技术[J]. 石油钻探技术, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056
引用本文: 叶金龙, 沈建文, 吴玉君, 杜征鸿, 睢圣, 李林. 川深1井超深井钻井提速关键技术[J]. 石油钻探技术, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056
YE Jinlong, SHEN Jianwen, WU Yujun, DU Zhenghong, SUI Sheng, LI Lin. Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056
Citation: YE Jinlong, SHEN Jianwen, WU Yujun, DU Zhenghong, SUI Sheng, LI Lin. Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1[J]. Petroleum Drilling Techniques, 2019, 47(3): 121-126. DOI: 10.11911/syztjs.2019056

川深1井超深井钻井提速关键技术

基金项目: 国家科技重大专项“优快钻井工具及关键技术应用研究”(编号:2016ZX05038006–004)、中国石化科技攻关项目“川西海相超深水平井安全快速钻井技术研究”(编号:JP18010)资助
详细信息
    作者简介:

    叶金龙(1966—),男,湖北英山人,1988年毕业于江汉石油学院钻井工程专业,2003年获江汉石油学院油气田开发工程专业硕士学位,高级工程师,主要从事石油工程技术研究及相关管理工作。E-mail:yejl.os@sinopec.com

  • 中图分类号: TE245

Key Techniques of Drilling Penetration Rate Improvement in Ultra-Deep Well Chuanshen-1

  • 摘要:

    川深1井储层埋藏超深,陆相难钻地层研磨性强、可钻性差,大尺寸井眼提速困难,深部地层可钻性差、井身质量控制困难。为此,根据川深1井的地层特征,优化应用了一系列钻井提速技术:采用了气体钻井和泡沫钻井技术,以大幅提高机械钻速;采用了抑制泥岩水化膨胀的泡沫钻井液体系,以解决上部大尺寸井眼地层出水、井眼失稳及高效携岩的难题;采取了旋冲钻井技术、“孕镶金刚石钻头+高速螺杆钻具”复合钻井技术钻进高研磨性地层,以提高钻井时效;采用了预弯曲动力学防斜打快技术,并配套高效PDC钻头和钻井参数优化,钻进深部难钻地层,以提高井身质量。川深1井钻井提速关键技术的应用,确保该井顺利钻至井深8 420 m完钻,创当时亚洲陆上钻井井深最深纪录,平均机械钻速提高至2.11 m/h,钻井周期缩短至475 d,取得了很好的现场应用效果,可为国内类似超深井高效钻井提供借鉴。

    Abstract:

    Reservoirs of Well Chuanshen-1 drilling through can be characterized by large burial depth, strong abrasiveness of the continent strata, poor drillability, slow penetration rate of large diameter boreholes, as well as wellbore quality control. To fully investigate these problems, the following drilling techniques were applied optimally based on the stratigraphic and lithological characteristics of Well Chuanshen-1. The techniques include gas and foam drilling to significantly increase the ROP. Also, it included a newly developed foam system for hydration swelling inhibition of mudstone to effectively solve the problems of water production in the upper large diameter section, and also wellbore instability with insufficient cuttings carrying capacity. In addition, combination of rotary percussion drilling, PDC bit, and high-speed screw techniques greatly improved drilling efficiency in drilling through high-abrasive strata. In addition, the study sought to control the pre-bending dynamic deviation and to optimize drilling parameters using a high-efficiency PDC drill bit. The application results show that drilling techniques of the ultra-deep Well Chuanshen-1 effectively alleviate the drilling difficulties from complex formations. The key technologies for ultra-deep well drilling were formed on the basis of these techniques effectively applied in Well Chuanshen-1, and they solved or alleviated various drilling problems. The average ROP was increased to 2.11 m/h, and the drilling cycle was shortened to 475 days, and achieved favorable field application results. The studies suggest that the effective implementation of this technology can provide technical reference in ultra-deep well drilling in the future.

  • 胜利油田有注水井10 600余口,分注井5 000余口,广泛分布于整装、断块、低渗透等类型油藏,截至目前,注水开发依然是该油田稳定发展的基础[1-2]。为了实现并保持“注够水,注好水,有效注水”的目标,胜利油田在分注井欠注后,考虑到层间矛盾相对突出,将分层酸化作为解堵增注的主要措施,也将其作为提高“三率”(水井分注率、注水层段合格率、注采对应率)的有效手段之一。

    目前,国内外关于油水井分段压裂技术的研究较多,但对分层酸化技术研究较少。分段压裂技术与分层酸化技术有相通之处,且取得了巨大进步,但从成本、规模、长效、后期检换的安全性能等方面综合考虑,该技术用于注水井的分层酸化是不合适的[3-10]。目前,常用的注水井分层酸化技术有化学暂堵酸化和机械分层酸化2类,机械分层酸化应用更为普遍。分层酸化管柱是机械分层酸化的载体,按所用封隔器类型划分,可将其分为扩张型和压缩型2类,其中扩张型分层酸化管柱主要配套K344型扩张式封隔器[11-12],压缩型分层酸化管柱主要配套Y341型、Y211型、Y221型、Y241型和Y511型等压缩型封隔器[13-16];按管柱功能划分,可将其分为分层酸化管柱和分层酸化分层注水一体化管柱[17-18];按换层方式划分,又可以将其分为投捞式和免投捞式2种,其中投捞式管柱主要有投捞芯子式、投球(棒、堵塞器)式、下测调仪器式等[19],而免投捞式管柱主要有有缆式和无缆式,有缆式是通过电缆传递信号控制换层,无缆式主要是通过压力波传递信号实现换层[20-21]

    现有分层酸化管柱基本满足了胜利油田常规井况(ϕ139.7~ϕ177.8 mm套管)分层酸化需求,但近年来随着该油田常规套损分层注水井、油井转注水井和新投入大井眼注水井数量的日益增加,以及油田降本增效要求的逐步升高,对分注井分层酸化技术及所用管柱的性能提出了更高要求。为此,笔者在分析胜利油田注水井分层酸化管柱矿场需求和近几年发展的基础上,探讨了存在的问题,指出了攻关方向和发展建议。

    胜利油田的整装、断块油藏埋深一般小于2 500 m,地层温度低于120 ℃,地层压力低于25 MPa;低渗透油藏埋深小于4 000 m,地层温度低于150 ℃,地层压力低于35 MPa。整装、断块油藏分注井以2~3层为主,最大分层数为7层;低渗透油藏分注井以2层为主,最大分层数为4层。随着“三率”和精细注水水平的日益提高,胜利油田在进行注水井分层酸化时,特殊井况和常规分注井降本增效要求酸化管柱要具有特殊功能。

    近年来,胜利油田套损分注井比例日益增加,治理后形成了一批套管内径为102.0/90.0 mm的分注井,为确保能够“注够水,注好水,有效注水”,需要配套相应的分层酸化管柱。另外,胜利油田调整油藏方案时,将一些用ϕ244.5 mm套管的油井转为了注水井,同时胜利油田海上新投入的分注井以使用ϕ244.5 mm套管为主,在此情况下,也需要完善分层酸化管柱,以适应矿场需求。

    对于低油价的常态化,降本增效成为国内油田普遍采用的应对措施之一。就分层酸化管柱而言,应主要做到2方面:1)提高管柱的施工成功率及管柱的矿场适应性;2)增加管柱的功能,通过增加分层酸化管柱的功能而减少其他投入,进而达到降本增效的目的。

    针对技术需求,近年来胜利油田研究形成了基本管柱、可替酸的分层酸化管柱、酸化返排一体化管柱、分层酸化分层注水一体化管柱和重复酸化完井管柱等,进行了大量应用,并取得了一定应用效果。

    针对胜利油田整装、断块及低渗透油藏常规井分层酸化需求,研究形成了3种基本分层酸化管柱(如图1所示),目前每年在现场应用近千井次。

    图  1  基本分层酸化管柱
    Figure  1.  Basic stratified acidizing strings

    K344型管柱主要由K344型封隔器、水力锚、投球滑套、节流器和洗井阀等组成,如图1(a)所示。主要用于整装、断块等类型油藏注水井的分层酸化,分1~6层酸化的约占90%,其中分2~3层酸化的约占85%。

    Y211/Y221型管柱主要由Y211/221型封隔器、投球滑套、节流器和洗井阀等组成,如图1(b)所示。主要用于整装、断块和低渗透油藏注水井的分层酸化,分1~2层酸化的约占4%。

    Y341型管柱主要由Y341型封隔器、补偿器、投球滑套、水力锚、定压滑套和洗井阀等组成,如图1(c)所示。主要用于低渗油藏注水井的分层酸化,分1~6层酸化的约占6%。

    3种基本分层酸化管柱的技术指标:K344型管柱的工作压力≤25 MPa,工作温度≤120 ℃,适用于内径为99.6~220.5 mm的套管;Y211/Y221和Y341型管柱的工作压力≤35 MPa,工作温度≤150 ℃,适用于内径为99.6~220.5 mm的套管。

    其中,投球滑套是分层酸化的主要配套工具之一,用以控制酸化换层。投球滑套主要由上接头、中心管、内部滑套、活塞、弹簧、挡套和滑套座组成,如图2所示。

    图  2  投球滑套结构
    1.上接头;2.中心管;3.内部滑套;4.活塞;5.弹簧;6.挡套;7.滑套座
    Figure  2.  Structure of a ball-throwing sliding sleeve

    使用时,投球滑套(不带球)随管柱下井。酸化换层时,投球至内部滑套,在注入液作用下控制剪钉被剪断,钢球随内部滑套下落至滑套座,关闭投球滑套下部管柱进液通道;同时,注入液推动活塞克服弹簧力下移,打开出液孔,实现对应层位的酸化。

    分层酸化时,炮眼处污染易引起酸化启动力高的情况,由于常规分层酸化管柱无法替酸,一般需更换压力等级高的井口重新施工,会耗费更多的人力物力,增加成本,同时增大施工安全风险。针对该问题,胜利油田研究形成了可替酸分层酸化管柱,其核心是研制出多功能洗井阀,替换了基本分层酸化管柱中的洗井阀。多功能洗井阀主要由阀球机构和锁爪机构组成,如图3所示。

    图  3  多功能洗井阀结构
    1.本体;2.锁爪;3.阀球;4.阀座;5.剪钉;6.锁环;7.接头
    Figure  3.  Structure of a multi-functional flushing valve

    可替酸分层酸化管柱下井时,不带钢球,保证正向畅通,实现正向替酸及对酸化层段的酸液浸泡,降低施工泵压。投球后,正向加压至剪钉被剪断,阀座带动锁爪下移至限位处。然后,锁爪内收,将阀球锁住,避免反洗井时将球洗出;同时,通过锁环实现锁紧。此时,可实现普通洗井阀功能。可替酸分层酸化管柱的技术指标:工作压力≤35 MPa,工作温度≤150 ℃。目前,该分层酸化管柱已广泛应用于胜利油田分注井的酸化施工中。

    现场对注水井进行分层酸化时,需要及时将解堵后形成的酸渣返排,以降低对地层的污染。目前,一般利用混气返排、抽汲返排等措施提高返排效果,但成本相对较高。为此,研制了酸化–返排一体化管柱,该管柱主要由转换器、封隔器和射流解堵器等组成,如图4所示。

    图  4  酸化–返排一体化管柱结构
    Figure  4.  Acidizing–flowback integrated string

    酸化时,酸液依次经过油管、转换器内中心管、封隔器中心管、ϕ48.0 mm油管、射流解堵器吸入口,然后进入目的层酸化。返排时,返排液依次经过套管环空、转换器内外中心管环空、封隔器中心管、ϕ48.0 mm油管环空、ϕ88.9 mm油管与ϕ48.0 mm油管环空、丝堵、射流解堵器喷嘴、ϕ48.0 mm油管、封隔器中心管、转换器内中心管、油管,然后流出井筒,主要靠动力液流经射流解堵器喷嘴时产生的负压实现酸渣的高效返排,进而降低返排成本。目前,酸化–返排一体化管柱在胜利油田累计实施50余井次,最大压差达到 11 MPa。

    常规分注井分层酸化、完井需分步进行,即先下入分层酸化管柱进行分层酸化,然后起出,再下入分层注水管柱完井,因此会造成占井周期长、工序多等问题。为此,研制了分层酸化分层注水一体化管柱,用一趟管柱完成分层酸化和分层注水。分层酸化分层注水一体化管柱主要由封隔器、一体化配水器和配水器等组成,如图5所示。

    图  5  分层酸化分层注水一体化管柱
    Figure  5.  Stratified acidizing–separate injection integrated string

    使用分层酸化分层注水一体化管柱时,按管柱入井—酸洗—投球坐封并开启下层配水器—酸化下层—投球换层—酸化上层—返排洗球—正常注水的流程进行。投球换层时,一体化芯子剪断剪钉,实现2级分离,上部402部分出水孔打开,酸化对应层位;下部404部分随低密度球下落至底部配水器,关闭下部出水孔。完成酸化后,返排出低密度球,转入正常分注,测调与常规空心测调类似。分层酸化分层注水一体化管柱实现了一趟管柱分层酸化后转分层注水完井,节约了工具费用、缩短了占井周期,达到了降本增效的目的。截至目前,已发展形成了化分层酸化、分层注水测调一体化技术[20]

    分层酸化分层注水一体化管柱的技术指标:工作压力≤35 MPa,工作温度≤150 ℃,适用层数≤3层。年均实施约30井次,施工成功率100%。

    由于分层酸化分层注水一体化管柱仍采用投球滑套式换层,故不能对单层进行重复酸化。针对该问题,结合分层注水测调一体化技术[21-23],形成了重复酸化完井管柱。重复酸化完井管柱的核心是,用测调一体化配水器替换基本分层注水管柱中的投球滑套,通过电缆向井下输入测调仪器,地面控制水嘴开关,实现换层,如图6所示。重复酸化完井管柱目前主要用于胜利油田单层的重复酸化,年均实施约20井次。

    图  6  测调一体化注水系统
    Figure  6.  Measurement–adjustment integrated water injection system

    尽管近年来胜利油田在注水井分层酸化管柱研究方面取得了较多成果和较好的应用效果,但相对于技术需求,依然存在一些问题:1)随着套损井比例增大及分层注水工艺的不断完善,套管内径小于90.0和80.0 mm的分注井都存在一定的分层酸化需求,对于分层酸化管柱的耐压能力提出了更高要求;2)酸化–返排一体化管柱虽然能实现酸渣的高效返排,但其提放管柱式换层制约了技术的规模化推广应用;3)分层酸化分层注水一体化管柱可实现酸化、注水管柱的有效融合,但滑套结构的换层方式使酸化层数受限且无法实现重复酸化;4)重复酸化完井管柱虽然可实现重复酸化,但需要下入测调仪进行酸化换层,耗时较长且增加了作业风险,考虑安全性、时效性和成本等因素,目前主要用于单层酸化。

    针对上述问题,结合相关研究现状和目前的技术发展趋势,提出以下发展建议:

    1)不断优化完善分层酸化管柱。针对胜利油田整装、断块、低渗透油藏及难动用储量的水驱开发,结合分注、酸化工艺和材料研究的不断进步,通过关键配套工具技术攻关及管柱结构的优化配套,逐步形成低成本、低风险酸化管柱,以满足矿场需求。

    2)进一步研究多功能集成管柱。近年来,基于降本提质增效目的,胜利油田提出了“分注管柱(陆上)在井5年以上”的目标,并初步建设了相应的示范区。但长远考虑,有必要研究形成适用范围更广的集分层注水、分层酸化等功能于一体的集成管柱。

    3)加强智能注水技术和智能管柱研究。相比常规投捞式换层方式,智能注水技术换层方式的安全性、可操作性更高,为多功能集成管柱的研究创造了条件。例如,胜利油田已经研究形成的有线传输智能注水技术和无线智能测控分注技术(相关注水系统见图7[24-26],均累计应用达80井次以上,取得了很好的应用效果。为了实时掌握井下注水情况,为油藏方案调整提供精准依据,应进一步开展智能注水技术和智能管柱的研究及矿场实践。

    图  7  智能注水系统
    Figure  7.  Intelligent water injection system

    1)胜利油田现有分层酸化管柱满足了很多现场需求,取得了一定效果:K344型、Y221/Y211型和Y341型等3种基本分层酸化管柱,满足了胜利油田整装、断块、低渗透等油藏常规注水井的分层酸化需求;可替酸分层酸化管柱实现了酸洗功能,提高了酸化成功率;酸化–返排一体化管柱一趟管柱实现了酸化、高效返排功能,节约了成本;分酸分注一体化管柱一趟管柱实现了分层酸化、分层注水,缩短了占井周期,实现了降本增效;重复酸化完井管柱实现了单层的重复酸化。

    2)随着胜利油田在套损井治理、难动用储量水驱开发及长寿命注水方面的不断发展,对注水井分注技术及相应的分层酸化技术提出了更高要求。

    3)基于矿场需求、研究现状和目前的技术发展趋势,建议在不断完善现有技术的同时,加强多功能集成管柱的研究。同时,应进一步研究具有智能分注、智能酸化等功能的智能注水技术和智能管柱,并开展相应的矿场实践。

  • 图  1   川深1井实钻井身结构

    Figure  1.   Casing program of Well Chuanshen-1

    图  2   孕镶金刚石钻头示意

    Figure  2.   Schematic diagram of the PDC bit

    图  3   稳定器位置与钻头侧向力关系曲线

    Figure  3.   The relationship curve between the position of centralizer and bit lateral force

    图  4   钻压与钻头侧向力的关系曲线

    Figure  4.   The relationship curve between the WOB and bit lateral force

    表  1   川深1井所在区块岩心试验结果

    Table  1   Core test results of the block of Well Chuanshen-1

    地层 井深/m 岩性 可钻性级值 抗压强度/
    MPa
    抗拉强度/
    MPa
    牙轮
    钻头
    PDC
    钻头
    侏罗系 2 818.00 长石砂岩 5.13 3.60 135 4.3
    三叠系 4 079.00 岩屑砂岩 7.59 6.83 190 9.1
    二叠系 6 787.00 硅质灰岩 8.19 7.98 250 9.8
    志留—
    奥陶系
    7 230.00 泥质灰岩 5.15 4.22 120 5.4
    寒武系 8 422.00 白云岩 7.84 7.89 265 9.5
    下载: 导出CSV

    表  2   川深1井气体钻井参数设计

    Table  2   Parameters design of gas drilling in Well Chuanshen–1

    井段/m 钻头外径/mm 注气量/(m3·min–1 注气压力/MPa 钻压/kN 转速/(r·min–1
    910.00~2 100.00 444.5 160~175 1.5~2.0 80~140 60~70
    2 100.00~2 318.10 175~210 2.0~3.0 140~180
    下载: 导出CSV

    表  3   预弯曲动力学防斜打快技术钻井技术指标

    Table  3   Technical indicators of the pre-bending dynamics deviation control

    开次 井眼/mm 钻头型号 钻进地层 钻进井段/m 进尺/m 机械钻速/(m·h–1
    三开 320.7 KM1652ADGR 雷口坡组—嘉陵江组 4 548.86~5 295.50 746.64 4.17
    三开 320.7 KS1952DGR 嘉陵江组 5 295.50~5 782.25 486.75 3.79
    三开 320.7 KM1652ADGR 嘉陵江组—长兴组 5 782.25~6 248.50 466.25 4.20
    四开 241.3 KS1653DGR 栖霞组—洗象池群组 6 885.00~7 359.11 474.11 4.09
    下载: 导出CSV
  • [1] 郭建春,苟波,王坤杰,等. 川西下二叠统超深气井网络裂缝酸化优化设计[J]. 天然气工业, 2017(6): 34–41.

    GUO Jianchun, GOU Bo, WANG Kunjie, et al. An optimal design of network-fracture acidification for ultra-deep gas wells in the Lower Permian strata of the Western Sichuan Basin[J]. Natural Gas Industry, 2017(6): 34–41.

    [2]

    HUANG Xianbin, SUN Jinsheng, LYU Kaihe, et al. Application of core-shell structural acrylic resin/nano-SiO2 composite in water based drilling fluid to plug shale pores[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 418–425. doi: 10.1016/j.jngse.2018.05.023

    [3] 陈明, 黄志远, 马庆涛, 等. 马深1井钻井工程设计与施工[J]. 石油钻探技术, 2017, 45(4): 15–20.

    CHEN Ming, HUANG Zhiyuan, MA Qingtao, et al. Design and drilling of Well Mashen 1[J]. Petroleum Drilling Techniques, 2017, 45(4): 15–20.

    [4] 张金成, 张东清, 张新军. 元坝地区超深井钻井提速难点与技术对策[J]. 石油钻探技术, 2011, 39(6): 6–10. doi: 10.3969/j.issn.1001-0890.2011.06.002

    ZHANG Jincheng, ZHANG Dongqing, ZHANG Xinjun. Difficulties of improving rate of penetration and its technical solutions in Yuanba Area[J]. Petroleum Drilling Techniques, 2011, 39(6): 6–10. doi: 10.3969/j.issn.1001-0890.2011.06.002

    [5] 闫光庆, 张金成. 中国石化超深井钻井技术现状与发展建议[J]. 石油钻探技术, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    YAN Guangqing, ZHANG Jincheng. Status and proposal of the Sinopec ultra-deep drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(2): 1–6. doi: 10.3969/j.issn.1001-0890.2013.02.001

    [6] 于文平. 我国深井钻井技术发展的难点及对策[J]. 中外能源, 2010, 15(9): 52–55.

    YU Wenping. Difficulty and countermeasures for the advance of the deep well drilling technology in China[J]. Sino-Global Energy, 2010, 15(9): 52–55.

    [7] 杨博仲, 汪瑶, 叶小科. 川西地区复杂超深井钻井技术[J]. 钻采工艺, 2018, 41(4): 27–30. doi: 10.3969/J.ISSN.1006-768X.2018.04.09

    YANG Bozhong, WANG Yao, YE Xiaoke. Drilling technology for complex ultradeep wells at west of Sichuan Area[J]. Drilling & Production Technology, 2018, 41(4): 27–30. doi: 10.3969/J.ISSN.1006-768X.2018.04.09

    [8] 汪海阁, 葛云华, 石林. 深井超深井钻完井技术现状、挑战和" 十三五”发展方向[J]. 天然气工业, 2017, 37(4): 1–8.

    WANG Haige, GE Yunhua, SHI Lin. Technologies in deep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8.

    [9] 王文刚, 王萍, 杨景利. 充气泡沫钻井液在元坝地区陆相地层的应用[J]. 石油钻探技术, 2010, 38(4): 45–48.

    WANG Wengang, WANG Ping, YANG Jingli. Application of aerated drilling fluid in terrestrial formation in Yuanba Block[J]. Petroleum Drilling Techniques, 2010, 38(4): 45–48.

    [10] 赵志国, 白彬珍, 何世明, 等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.

    [11] 曹品鲁, 马文英, 张兆国, 等. 可循环空气泡沫钻井技术在元坝10井的应用[J]. 石油钻探技术, 2011, 39(5): 49–52. doi: 10.3969/j.issn.1001-0890.2011.05.011

    CAO Pinlu, MA Wenying, ZhANG Zhaoguo, et al. Application of recycling air-foam drilling technology in Well Yuanba-10[J]. Petroleum Drilling Techniques, 2011, 39(5): 49–52. doi: 10.3969/j.issn.1001-0890.2011.05.011

    [12] 索忠伟, 王甲昌, 张海平, 等. 旋冲钻井在塔河工区超深井段的应用[J]. 石油钻采工艺, 2013, 35(4): 44–46. doi: 10.3969/j.issn.1000-7393.2013.04.010

    SUO Zhongwei, WANG Jiachang, ZHANG Haiping, et al. Application of rotary percussion drilling on the super deep section in Tahe Field[J]. Oil Drilling & Production Technology, 2013, 35(4): 44–46. doi: 10.3969/j.issn.1000-7393.2013.04.010

    [13]

    POWELL S W, HERRINGTON D, BOTTON B, et al. Fluid hammer increases PDC performance through axial and torsional energy at the bit[R]. SPE 166433, 2013.

    [14] 祝效华, 刘伟吉. 旋冲钻井技术的破岩及提速机理[J]. 石油学报, 2018, 39(2): 216–222.

    ZHU Xiaohua, LIU Weiji. Rock breaking and ROP rising mechanism of rotary-percussive drilling technology[J]. Acta Petrolei Sinica, 2018, 39(2): 216–222.

    [15] 雷鹏, 倪红坚, 王瑞和, 等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    [16] 狄勤丰, 朱卫平, 姚建林, 等. 预弯曲动力学防斜打快钻具组合动力学模型[J]. 石油学报, 2007, 28(6): 118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024

    DI Qinfeng, ZHU Weiping, YAO Jianlin, et al. Dynamic model of bottom hole assembly used in pre-bending dynamic vertical and fast drilling technology[J]. Acta Petrolei Sinica, 2007, 28(6): 118–121. doi: 10.3321/j.issn:0253-2697.2007.06.024

    [17] 王成岭, 李作宾, 蒋金宝, 等. 塔河油田12区超深井快速钻井技术[J]. 石油钻探技术, 2010, 38(3): 17–21. doi: 10.3969/j.issn.1001-0890.2010.03.004

    WANG Chengling, LI Zuobin, JIANG Jinbao, et al. Fast drilling technology on ultra-deep wells in Block-12, Tahe Oilfield[J]. Petroleum Drilling Techniques, 2010, 38(3): 17–21. doi: 10.3969/j.issn.1001-0890.2010.03.004

  • 期刊类型引用(8)

    1. 薛佺,郭永鑫,庞勇. 基于嵌入式单片机桥式同心分层注水一体化测调监测研究. 粘接. 2024(01): 165-168 . 百度学术
    2. 平恩顺,张明晰,王瑞泓,王永亮,赵磊,李路遥,张京宝. 跨采油树不动管柱酸压增注技术研究. 钻采工艺. 2023(02): 122-125 . 百度学术
    3. 魏军. 基于超声波反射法的油田注水井管柱腐蚀识别. 无损检测. 2023(10): 59-63+77 . 百度学术
    4. 赵广渊,王天慧,杨树坤,李翔,吕国胜,杜晓霞. 渤海油田液压控制智能分注优化关键技术. 石油钻探技术. 2022(01): 76-81 . 本站查看
    5. 孙敏. 分层注水压力控制驱油效果实验研究. 化学工程师. 2022(08): 59-62 . 百度学术
    6. 曹力元. 苏北油田CO_2驱油同心双管分层注气技术. 石油钻探技术. 2022(04): 109-113 . 本站查看
    7. 严梁柱,方琼瑶. 螺杆驱动滑套式低频脉冲注水工具设计. 液压气动与密封. 2022(10): 59-64 . 百度学术
    8. 张玉梅. 锚定补偿式分层注水管柱的改进及应用. 中外能源. 2022(10): 52-56 . 百度学术

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数:  3506
  • HTML全文浏览量:  1353
  • PDF下载量:  210
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-02-26
  • 网络出版日期:  2019-04-28
  • 刊出日期:  2019-04-30

目录

/

返回文章
返回