Ultra-High Temperature High Pressure Drilling Technology for Narrow Safety Density Window Strata in the Western South China
-
摘要:
为解决南海西部窄安全密度窗口地层钻井中易发生井漏、井涌甚至井喷等井下故障的问题,通过研究超高温高压复杂地层压力预测监测技术、钻井液随钻堵漏技术、井下当量循环密度预测与监测技术、抗高温钻井液、超高温高压固井技术,形成了适用于南海西部的窄安全密度窗口超高温高压钻井技术。该技术在乐东区域的7口超高温高压探井进行了应用,钻井成功率达到100%,井下故障率显著降低,与应用前的同类型井相比,钻井生产时效平均提高了21%。这表明,窄安全密度窗口超高温高压钻井技术可以解决南海西部安全密度窗口窄导致的问题,可为深水高温高压领域的勘探开发提供技术支持。
Abstract:In order to solve lost circulation, well kick and even blowout caused by narrow safety density window in the western South China Sea, a great effort has been made in studying technologies of the pressure prediction and monitoring in ultra-HTHP complicated formation, the drilling fluid plugging while drilling, the prediction and monitoring of downhole equivalent circulation density, and the high temperature resistant drilling fluid and utra-HTHP cementing. As an achievement, the narrow safety density ultra-HTHP drilling technology suitable for the western South China Sea has been developed. This technology has been applied in seven ultra-HTHP exploration wells in Ledong area, and the occurrence of downhole problems has been significantly reduced. Compared with the same type of wells prior to applying this technology, the average drilling time efficiency increased by 21% and the drilling success rate reached 100%. This showed that the ultra-HTHP narrow density window drilling technology could solve the problems caused by the narrow safety density window in the western South China Sea, and provide technical support for the exploration and development of high temperature high pressure deep water reservoirs.
-
-
表 1 南海西部已钻超高温高压井井下故障统计
Table 1 Statistics on the downhole problems of drilled ultra-HTHP wells in the western South China Sea
井号 建井周期/d 井深/m 层位 温度/℃ 地层压力系数 井下故障 D-1 225.00 5 026.45 梅山组 241.0 2.20 溢流、井漏、井眼报废 D-2 163.00 4 726.00 三亚组 181.0 2.24 井喷、井眼报废 D-3 134.00 3 508.00 黄流组 171.0 2.29 溢流、卡钻、井眼报废 D-4 202.00 4 777.00 黄流组 190.0 2.00 溢流、井漏、井眼报废 D-5 111.00 3 696.60 三亚组 150.0 1.99 井漏、井眼报废 D-6 60.70 4 098.10 黄流组二段 187.0 2.25 井漏、溢流、井眼报废 D-7 75.21 4 103.00 黄流组 155.5 2.28 井漏、卡钻、井眼报废 表 2 某超高温高压井钻井液实测性能
Table 2 Measured drilling fluid performance in a ultra-HTHP well
井深/m 密度/(kg·L–1) 塑性黏度/(mPa·s) 动切力/Pa 静切力/Pa 高温高压滤失量/mL pH值 固相含量,% 4 105.00 2.22 20 9.1 7/10 7.2 10.5 40.6 4 138.00 2.27 22 8.6 8/12 7.2 10.5 42.0 4 248.00 2.30 21 11.5 9/17 7.2 10.5 40.6 4 352.00 2.29 22 9.6 9/17 6.8 10.5 40.3 -
[1] 李炎军, 吴江, 黄熠, 等. 莺歌海盆地中深层高温高压钻井关键技术及其实践效果[J]. 中国海上油气, 2015, 27(4): 102–106 http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504014 LI Yanjun, WU Jiang, HUANG Yi, et al. Key technology and application of HTHP drilling in mid-deep formations in Yinggehai Basin[J]. China Offshore Oil and Gas, 2015, 27(4): 102–106 http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504014
[2] 吴江, 李炎军, 罗鸣, 等. 南海莺–琼盆地复杂压力层系井身结构优化设计[J]. 中国海上油气, 2018, 30(2): 126–131 http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201802018 WU Jiang, LI Yanjun, LUO Ming, et al. Optimal design of well structure of complex pressure layer of Ying-Qiong Basins in South China Sea[J]. China Offshore Oil and Gas, 2018, 30(2): 126–131 http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201802018
[3] 罗鸣,韩成,陈浩东,等. 南海西部高温高压井堵漏技术[J]. 石油钻采工艺, 2016, 38(6): 801–804 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201606016 LUO Ming, HAN Cheng, CHEN Haodong, et al. Plugging technology for HTHP wells in Western South China Sea[J]. Oil Drilling & Production Technology, 2016, 38(6): 801–804 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201606016
[4] 林四元,李中,黄熠,等. 高性能水基钻井液在莺歌海盆地高温高压井的应用[J]. 钻井液与完井液, 2018, 35(2): 44–48 doi: 10.3969/j.issn.1001-5620.2018.02.007 LIN Siyuan, LI Zhong, HUANG Yi, et al. The development and application of high performance water base muds for HTHP wells in Yinggehai Basin[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 44–48 doi: 10.3969/j.issn.1001-5620.2018.02.007
[5] 李玉伟, 艾池, 王志成, 等. 深井安全钻井液密度窗口影响因素[J]. 油气地质与采收率, 2013, 20(1): 107–110, 118 doi: 10.3969/j.issn.1009-9603.2013.01.028 LI Yuwei, AI Chi, WANG Zhicheng, et al. Analysis on influential factors for safe window of drilling fluid density in deep well[J]. Petroleum Geology and Recovery Efficiency, 2013, 20(1): 107–110, 118 doi: 10.3969/j.issn.1009-9603.2013.01.028
[6] 苏勤, 侯绪田. 窄安全密度窗口条件下钻井设计技术探讨[J]. 石油钻探技术, 2011, 39(3): 62–65 doi: 10.3969/j.issn.1001-0890.2011.03.011 SU Qin, HOU Xutian. Resarch on drilling design techniques for narrow mud weight window[J]. Petroleum Drilling Techniques, 2011, 39(3): 62–65 doi: 10.3969/j.issn.1001-0890.2011.03.011
[7] 杨雄文, 周英操, 方世良, 等. 国内窄窗口钻井技术应用对策分析与实践[J]. 石油矿场机械, 2010, 39(8): 7–11 doi: 10.3969/j.issn.1001-3482.2010.08.002 YANG Xiongwen, ZHOU Yingcao, FANG Shiliang, et al. Strategy analysis of narrow window drilling technology and practice[J]. Oil Field Equipment, 2010, 39(8): 7–11 doi: 10.3969/j.issn.1001-3482.2010.08.002
[8] 陈森, 梁大川, 李磊. 深井超深井安全钻井液密度窗口研究进展[J]. 天然气工业, 2008, 28(1): 85–87 doi: 10.3787/j.issn.1000-0976.2008.01.023 CHEN Sen, LIANG Dachuan, LI Lei. The advancement of density window of safe drilling fluid for deep and ultradeep wells[J]. Natural Gas Industry, 2008, 28(1): 85–87 doi: 10.3787/j.issn.1000-0976.2008.01.023
[9] 郭建华, 李黔, 高自力. 高温高压井ECD计算[J]. 天然气工业, 2006, 26(8): 72–74 doi: 10.3321/j.issn:1000-0976.2006.08.022 GUO Jianhua, LI Qian, GAO Zili. ECD computation for HPHT wells[J]. Natural Gas Industry, 2006, 26(8): 72–74 doi: 10.3321/j.issn:1000-0976.2006.08.022
[10] 王富华, 王瑞和, 刘江华, 等. 高密度水基钻井液高温高压流变性研究[J]. 石油学报, 2010, 31(2): 306–310 http://d.old.wanfangdata.com.cn/Periodical/syxb201002023 WANG Fuhua, WANG Ruihe, LIU Jianghua, et al. Rheology of high-density water-based drilling fluid at high temperature and high pressure[J]. Acta Petrolei Sinica, 2010, 31(2): 306–310 http://d.old.wanfangdata.com.cn/Periodical/syxb201002023
[11] 刘震寰. 超高密度高温钻井液体系与流变性调控机理研究[D]. 东营: 中国石油大学(华东), 2008. LIU Zhenhuan. Study on ultra-high density high temperature drilling fluid and rheology control mechanism[D]. Dongying: China University of Petroleum(Huadong), 2008.
[12] 闫传梁, 谢玉洪, 邓金根, 等. 安全钻井液密度上限的确定方法[J]. 天然气工业, 2013, 33(6): 80–85 http://d.old.wanfangdata.com.cn/Periodical/trqgy201306015 YAN Chuanliang, XIE Yuhong, DENG Jingen, et al. A method of determining the safe upper limit of drilling fluid density[J]. Natural Gas Industry, 2013, 33(6): 80–85 http://d.old.wanfangdata.com.cn/Periodical/trqgy201306015
[13] 蔚宝华, 王炳印, 曲从锋, 等. 高温高压储层安全钻井液密度窗口确定技术[J]. 石油钻采工艺, 2005, 27(3): 31–34, 37 doi: 10.3969/j.issn.1000-7393.2005.03.012 YU Baohua, WANG Bingyin, QU Congfeng, et al. Mud density determination of HT/HP reservoir formation[J]. Oil Drilling & Production Technology, 2005, 27(3): 31–34, 37 doi: 10.3969/j.issn.1000-7393.2005.03.012
[14] 吴超, 陈小锋, 王磊. 钻井液密度窗口随钻预测理论及其工程应用[J]. 石油学报, 2016, 37(3): 399–405 http://d.old.wanfangdata.com.cn/Periodical/syxb201603012 WU Chao, CHEN Xiaofeng, WANG Lei. A theory on predicting drilling fluid density windows while drilling and its engineering application[J]. Acta Petrolei Sinica, 2016, 37(3): 399–405 http://d.old.wanfangdata.com.cn/Periodical/syxb201603012
[15] 吴江, 朱新华, 李炎军, 等. 莺歌海盆地东方13–1气田高温高压尾管固井技术[J]. 石油钻探技术, 2016, 44(4): 17–21 http://d.old.wanfangdata.com.cn/Periodical/syztjs201604004 WU Jiang, ZHU Xinhua, LI Yanjun, et al. HTHP liner cementing techniques in the Dongfang 13-1 Gas Field in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2016, 44(4): 17–21 http://d.old.wanfangdata.com.cn/Periodical/syztjs201604004
[16] 王果, 刘建华, 丁超, 等. 控压钻井条件下井身结构优化设计[J]. 石油学报, 2013, 34(3): 545–549 http://d.old.wanfangdata.com.cn/Periodical/syxb201303019 WANG Guo, LIU Jianhua, DING Chao, et al. Casing program optimization with the managed pressure drilling technique[J]. Acta Petrolei Sinica, 2013, 34(3): 545–549 http://d.old.wanfangdata.com.cn/Periodical/syxb201303019
[17] 姜智博, 周英操, 王倩, 等. 实现窄密度窗口安全钻井的控压钻井系统工程[J]. 天然气工业, 2011, 31(8): 76–79 doi: 10.3787/j.issn.1000-0976.2011.08.018 JIANG Zhibo, ZHOU Yingcao, WANG Qian, et al. Managed pressure drilling system used in narrow density window drilling scenarios[J]. Natural Gas Industry, 2011, 31(8): 76–79 doi: 10.3787/j.issn.1000-0976.2011.08.018
-
期刊类型引用(23)
1. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 . 百度学术
2. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 . 百度学术
3. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
4. 宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 . 百度学术
5. 王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 . 本站查看
6. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
7. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 . 百度学术
8. 张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 . 百度学术
9. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 . 百度学术
10. 陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 . 百度学术
11. 严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 . 百度学术
12. 张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 . 百度学术
13. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
14. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
15. 张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 . 本站查看
16. 周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 . 百度学术
17. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 . 百度学术
18. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
19. 江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 . 百度学术
20. 郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 . 本站查看
21. 丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 . 本站查看
22. 李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 . 百度学术
23. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 11831
- HTML全文浏览量: 6175
- PDF下载量: 110
- 被引次数: 30