适用于油基钻井液的随钻电阻率成像测井方法

张卫, 路保平, 王保良, 李新, 陆军轶, 冀海峰

张卫, 路保平, 王保良, 李新, 陆军轶, 冀海峰. 适用于油基钻井液的随钻电阻率成像测井方法[J]. 石油钻探技术, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009
引用本文: 张卫, 路保平, 王保良, 李新, 陆军轶, 冀海峰. 适用于油基钻井液的随钻电阻率成像测井方法[J]. 石油钻探技术, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009
ZHANG Wei, LU Baoping, WANG Baoliang, LI Xin, LU Junyi, JI Haifeng. The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009
Citation: ZHANG Wei, LU Baoping, WANG Baoliang, LI Xin, LU Junyi, JI Haifeng. The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009

适用于油基钻井液的随钻电阻率成像测井方法

基金项目: 国家科技重大专项“低渗透储层高精度随钻成像技术研究”(编号:2016ZX05021-002)资助
详细信息
    作者简介:

    张卫(1970-),男,安徽阜阳人,1992年毕业于山东工业大学自动化仪表专业,2001年获石油大学(华东)控制理论与控制工程专业硕士学位,2007年获华中科技大学机械制造及其自动化专业博士学位,教授级高级工程师,主要从事井下智能仪器及相关技术研究。E-mail: zhangwei.sripe@sinopec.com

  • 中图分类号: P631.8+11

The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid

  • 摘要:

    油基钻井液会阻断直流电流通路从而使常规的随钻电阻率测井方法失效,为解决该问题,基于电容耦合非接触电导检测技术,提出了可用于油基钻井液的随钻电阻率成像测井方法。综述了随钻电阻率测量的主要方法,介绍了电容耦合非接触电导检测技术的原理与特点。将电容耦合和电感耦合相结合,建立了油基钻井液条件下的方位测井模拟模型,并利用该模型进行了多种工况下的测井模拟试验,分析了周向位置与电流幅值、电极周向位置与电流相位的关系及钮扣电极成像原理,模拟结果表明,钮扣电极具有方位探测能力,所提出的测井方法具有可行性。设计了地面模拟测井系统,进行了方位测井室内试验,发现该测井系统能够实现地层成像和测量地层倾角,试验结果与实际地层倾角的相对误差仅为4.7%。研究认为,提出的随钻电阻率成像测井方法可以在油基钻井液条件下进行随钻侧向电阻率测量,并且使测得的电阻率成像,从而得到较为可靠的测井结果。

    Abstract:

    The goal of this study was to solve the problem of drilling fluids blocking circuits and losing signal during the logging process. Oil-based drilling fluids are prone to blocking the DC circuit and hence invalidating conventional resistivity when using the LWD method. In order to solve this problem, researchers proposed implementing the capacitive coupling-based non-contact conductance detection technology with a resistivity imaging LWD method suitable for oil-based drilling fluids. This paper summarized the main methods of resistivity measurement while drilling, and introduced the principle and characteristics of capacitive coupled non-contact conductance detection technology. The azimuth logging simulation model for oil-based drilling fluids was established by combining capacitive coupling principle and inductive coupling principle. Then, the logging simulation experiment under various working conditions was carried out with this model, and the relationships between the circumferential position and current amplitude, circumferential position of electrode and the current phase, as well as the imaging principle of button electrode were analyzed. The simulation results showed that the button electrode had azimuth detection capability, and the proposed logging method was feasible. A surface simulation logging system was designed to carry out the indoor test of azimuth logging. The test found that this logging system may to achieve formation imaging and measure the formation dip angle, and the relative error between the test result and the actual formation dip angle is only 4.7%. The study showed that the proposed resistivity imaging LWD method is able to perform lateral resistivity measurements while drilling in oil-based drilling fluids, and make the measured resistivity imaging to obtain the reliable logging results.

  • 图  1   C4D传感器的基本结构

    Figure  1.   Basic structure of a C4D sensor

    图  2   C4D传感器的等效电路

    Figure  2.   The equivalent circuit of a C4D sensor

    图  3   油基钻井液条件下的方位测井模型

    Figure  3.   The azimuth logging model under the condition of oil-based drilling fluids

    图  4   油基钻井液条件下的方位测井等效电路

    Figure  4.   The azimuth logging equivalent circuit under the condition of oil-based drilling fluids

    图  5   随钻电阻率成像测井传感器的基本结构

    Figure  5.   Basic structure of the resistivity imaging LWD sensor

    图  6   方位测井模拟模型及模拟试验示意

    Figure  6.   Schematic of azimuth logging simulation model and simulation test

    图  7   电极周向位置与电流响应的关系

    Figure  7.   Relationship between the circumferential position of electrode and the current response

    图  8   30°倾斜地层模型结构示意

    Figure  8.   Schematic of the 30° inclined formation model

    图  9   30°倾斜地层成像结果

    Figure  9.   Imaging results of 30° inclined formation

    图  10   方位测井室内模拟试验装置示意

    Figure  10.   Schematic of azimuth logging indoor simulation test device

    图  11   钮扣电极成像结果

    Figure  11.   The imaging results of button electrode

  • [1] 原宏壮, 陆大卫, 张辛耘, 等. 测井技术新进展综述[J]. 地球物理学进展, 2005, 20(3): 786–795 doi: 10.3969/j.issn.1004-2903.2005.03.034

    YUAN Hongzhuang, LU Dawei, ZHANG Xinyun, et al. An overview of recent advances in well logging technology[J]. Progress in Geophysics, 2005, 20(3): 786–795 doi: 10.3969/j.issn.1004-2903.2005.03.034

    [2] 邸德家, 陶果, 孙华峰, 等. 随钻地层测试技术的分析与思考[J]. 测井技术, 2012, 36(3): 294–299 doi: 10.3969/j.issn.1004-1338.2012.03.016

    DI Dejia, TAO Guo, SUN Huafeng, et al. Analysis and consideration of formation testing while drilling technology[J]. Well Logging Technology, 2012, 36(3): 294–299 doi: 10.3969/j.issn.1004-1338.2012.03.016

    [3]

    BONNER S, BURGESS T, CLARK B, et al. Measurements at the bit: a new generation of MWD tools[J]. Oilfield Review, 1993, 5(3): 44–54

    [4] 刘乃震, 王忠, 刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505026.htm

    [5] 潘一, 付龙, 杨双春. 国内外油基钻井液研究现状[J]. 现代化工, 2014, 34(4): 21–24 http://d.old.wanfangdata.com.cn/Periodical/xdhg201404006

    PAN Yi, FU Long, YANG Shuangchun. Research process of oil-based drilling fluid at home and abroad[J]. Modern Chemical Industry, 2014, 34(4): 21–24 http://d.old.wanfangdata.com.cn/Periodical/xdhg201404006

    [6] 唐宇. 油基泥浆随钻成像测井仪OBM[J]. 测井技术, 2011, 35(6): 608 http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201106033.htm

    TANG Yu. Oil-based mud while drilling imaging logging tool OBM[J]. Well Logging Technology, 2011, 35(6): 608 http://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201106033.htm

    [7] 巫振观, 范宜仁, 王磊, 等. 随钻方位电磁波测井仪器偏心响应模拟及分析[J]. 中国石油大学学报(自然科学版), 2017, 41(5): 69–79 doi: 10.3969/j.issn.1673-5005.2017.05.008

    WU Zhenguan, FAN Yiren, WANG Lei, et al. Numerical modeling and analysis of eccentricity effect on borehole response of azimuthal electromagnetic logging while drilling tool[J]. Journal of China University of Petroleum(Natural Science Edition), 2017, 41(5): 69–79 doi: 10.3969/j.issn.1673-5005.2017.05.008

    [8] 刘欢, 张占松, 黄若坤, 等. 利用油基泥浆微电阻率成像测井技术进行沉积解释[J]. 石油天然气学报, 2013, 35(6): 64–68 doi: 10.3969/j.issn.1000-9752.2013.06.012

    LIU Huan, ZHANG Zhansong, HUANG Ruokun, et al. Application of OBMI imaging logging technique for sedimentary interpretation[J]. Journal of Oil and Gas Technology, 2013, 35(6): 64–68 doi: 10.3969/j.issn.1000-9752.2013.06.012

    [9]

    GAŠ B, DEMJANĚNKO M, VACÍK J. High-frequency contactless conductivity detection in isotachophoresis[J]. Journal of Chromatography A, 1980, 192(2): 253–257 doi: 10.1016/S0021-9673(80)80001-X

    [10]

    ZEMANN A J, SCHNELL E, VOLGGER D, et al. Contactless conductivity detection for capillary electrophoresis[J]. Analytical Chemistry, 1998, 70(3): 563–567 doi: 10.1021/ac9707592

    [11]

    KUBÁŇ P, HAUSER P C. Contactless conductivity detection for analytical techniques: developments from 2010 to 2012[J]. Electrophoresis, 2013, 34(1): 55–69 doi: 10.1002/elps.v34.1

    [12]

    ZEMANN A J. Capacitively coupled contactless conductivity detection in capillary electrophoresis[J]. Electrophoresis, 2003, 24(12/13): 2125–2137

    [13]

    JI Haifeng, LYU Yingchao, WANG Baoliang, et al. An improved capacitively coupled contactless conductivity detection sensor for industrial applications[J]. Sensors and Actuators A: Physical, 2015, 235: 273–280 doi: 10.1016/j.sna.2015.09.038

    [14]

    ARPS J J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771A[P]. 1967–02-21[2018–09-25].

    [15] 李科, 鲁保平, 张家田. 数字相敏检波器在测井仪器中的应用研究[J]. 石油仪器, 2011, 25(1): 35–38 doi: 10.3969/j.issn.1004-9134.2011.01.012

    LI Ke, LU Baoping, ZHANG Jiatian. A study on the application of the digital phase sensitive detection in the well logging tools[J]. Petroleum Instruments, 2011, 25(1): 35–38 doi: 10.3969/j.issn.1004-9134.2011.01.012

    [16]

    RITTER R N, GOREK M, FULDA C, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[J]. Petrophysics, 2005, 46(2): 85–95

    [17] 柳杰, 殷小敏, 张彦伟, 等. 新型油基泥浆测井电成像方法研究[J]. 地球物理学进展, 2015, 30(2): 790–796 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201502042.htm

    LIU Jie, YIN Xiaomin, ZHANG Yanwei, et al. A novel approach for borehole electrical imaging in oil-based mud[J]. Process in Geophysics, 2015, 30(2): 790–796 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201502042.htm

    [18] 高霞, 谢庆宾. 储层裂缝识别与评价方法新进展[J]. 地球物理学进展, 2007, 22(5): 1460–1465 doi: 10.3969/j.issn.1004-2903.2007.05.017

    GAO Xia, XIE Qingbin. Advances in identification and evaluation of fracture[J]. Progress in Geophysics, 2007, 22(5): 1460–1465 doi: 10.3969/j.issn.1004-2903.2007.05.017

    [19]

    CHEN G, CHUI C K. A modified adaptive Kalman filter for real-time applications[J]. IEEE Transactions on Aerospace & Electronic Systems, 1991, 27(1): 149–154

  • 期刊类型引用(11)

    1. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 . 百度学术
    2. 卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展. 油气藏评价与开发. 2024(04): 618-628 . 百度学术
    3. 叶志权,肖雷,王丽峰,薛浩楠,王晗. 小井眼连续油管多簇射孔填砂分段压裂技术——以百口泉油田百1断块X井为例. 油气井测试. 2023(01): 33-37 . 百度学术
    4. 李娜. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2023(07): 97-98 . 百度学术
    5. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术
    6. 张文康. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石化技术. 2022(12): 139-141 . 百度学术
    7. 邹立萍,邹昌柏. 关于水平井压裂工艺技术现状及展望. 当代化工研究. 2021(10): 7-8 . 百度学术
    8. 苗娟,黄兵,谢力,汤明. 高钢级套管段铣工具优化及性能评价. 特种油气藏. 2021(02): 163-170 . 百度学术
    9. 李杉杉,孙虎,张冕,池晓明,刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石油钻探技术. 2021(04): 92-98 . 本站查看
    10. 谢慧华,马青印,辛红伟,田相元,孔春岩,贺亚杰. 文留油田盐间油藏深部双层套管开窗侧钻技术. 断块油气田. 2021(05): 706-710 . 百度学术
    11. 李海涛,罗红文,向雨行,安树杰,李颖,蒋贝贝,谢斌,辛野. DTS/DAS技术在水平井压裂监测中的应用现状与展望. 新疆石油天然气. 2021(04): 62-73 . 百度学术

    其他类型引用(6)

图(11)
计量
  • 文章访问数:  12162
  • HTML全文浏览量:  6101
  • PDF下载量:  81
  • 被引次数: 17
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-12-09
  • 网络出版日期:  2019-01-10
  • 刊出日期:  2018-12-31

目录

    /

    返回文章
    返回