川西低渗透气藏气体钻井井壁稳定性评价方法

刘厚彬, 韩旭, 张俊, 刘彪, 孟英峰

刘厚彬, 韩旭, 张俊, 刘彪, 孟英峰. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术, 2019, 47(1): 25-31. DOI: 10.11911/syztjs.2019004
引用本文: 刘厚彬, 韩旭, 张俊, 刘彪, 孟英峰. 川西低渗透气藏气体钻井井壁稳定性评价方法[J]. 石油钻探技术, 2019, 47(1): 25-31. DOI: 10.11911/syztjs.2019004
LIU Houbin, HAN Xu, ZHANG Jun, LIU Biao, MENG Yingfeng. Wellbore Stability Evaluation during Gas Drilling through Low Permeability Gas Reservoirs in Western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25-31. DOI: 10.11911/syztjs.2019004
Citation: LIU Houbin, HAN Xu, ZHANG Jun, LIU Biao, MENG Yingfeng. Wellbore Stability Evaluation during Gas Drilling through Low Permeability Gas Reservoirs in Western Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(1): 25-31. DOI: 10.11911/syztjs.2019004

川西低渗透气藏气体钻井井壁稳定性评价方法

基金项目: 国家重大专项“低渗透油气藏高效开发钻完井技术”(编号:2016ZX05021)和国家自然科学基金项目“气体钻井技术基础研究”(编号:51134004)联合资助
详细信息
    作者简介:

    刘厚彬(1980—),男,山东东平人,2003年毕业于西南石油大学勘查技术与工程专业,2009年获西南石油大学油气井工程专业博士学位,副教授,主要从事岩石力学与井壁稳定、钻井提速等方面的研究工作。E-mail: liuhoubin523@sina.com

  • 中图分类号: TE28+3

Wellbore Stability Evaluation during Gas Drilling through Low Permeability Gas Reservoirs in Western Sichuan

  • 摘要:

    川西低渗透气藏采用气体钻井技术钻进时,致密砂岩井段井下垮塌频繁,为给制定防塌技术措施提供依据,在分析非达西渗流、储层敏感性对孔隙压力影响,计算气层产气时径向拖曳力的基础上,分析了径向拖曳力影响下井周的有效应力场,利用川西X3井实钻数据分析了气体钻井井壁垮塌的机理,并与摩尔库伦准则和拉伸破坏模型相结合,提出了适用于川西低渗透气藏气体钻井的井壁稳定性评价方法。川西低渗透气藏气体钻井井壁垮塌机理为:低渗透储层中高速非达西渗流和气体产出时产生的径向拖曳力使坍塌压力升高,井壁稳定性变差,同时在径向拖曳力作用下先发生拉伸破坏,随后地层压力降低进而发生剪切破坏,出现垮塌。利用低渗透气藏气体钻井井壁稳定性评价方法评价了X3井低渗透储层的井壁稳定性,评价结果与实钻情况相符,说明采用该评价方法可以评价川西低渗透气藏气体钻井时的井壁稳定性,能够为川西低渗透气藏气体钻井制定防塌技术措施提供指导。

    Abstract:

    In gas drilling through low permeability gas reservoirs in Western Sichuan, borehole collapse occurs frequently in the tight sandstone sections. To develop a protocol for anti-collapse technical measures during gas drilling of such as in the kinds of gas reservoirs found in western Sichuan, effective stress around the wellbore under the influence of radial drag force has been analyzed based on the analysis of non-Darcy seepage and reservoir sensitivity on pore pressure, and radial drag force during gas production. The wellbore collapse mechanism of gas drilling was analyzed by using practical drilling data of Well X3 in Western Sichuan. Then a wellbore stability evaluation method during gas drilling through low permeability gas reservoirs in western Sichuan was proposed in combination with Mohr-Coulomb criterion and tensile failure model. Results showed that the high-speed non-Darcy seepage and the radial drag force generated during gas production in low permeability reservoir will increase the borehole collapse pressure, so damage borehole stability. Tensile failure occurs first under radial drag force, and then shear failure happens due to the decrease of formation pressure. Those rock failures result in wellbore collapse. Wellbore stability of Well X3 in the low permeability reservoir was evaluated using this method, and the results were consistent with the practical drilling situations. It demonstrated that this method could be used to evaluate wellbore stability during gas drilling in low permeability gas reservoir in western Sichuan, and it would provide a protocol and recommended best practices for the development of anti-collapse measures during gas drilling in low permeability gas reservoir in Western Sichuan.

  • 图  1   近井地带地层孔隙压力分布

    Figure  1.   Pore pressure distribution of near wellbore formation

    图  2   考虑非达西渗流近井地带地层孔隙压力分布

    Figure  2.   Pore pressure distribution in the near wellbore formation considering non-Darcy seepage

    图  3   考虑应力敏感性近井地带地层孔隙压力分布

    Figure  3.   Pore pressure distribution in the near wellbore formation considering the stress sensitivity

    图  4   气体产出过程中近井地带地层径向拖曳力分布

    Figure  4.   Radial drag force distribution in the near wellbore formation during gas production

    图  5   近井地带地层径向有效应力分布

    Figure  5.   Radial effective stress distribution in the near wellbore formation

    图  6   井眼周向有效应力与孔隙压力的关系

    Figure  6.   Relationship between the circumferential effective stress and the pore pressure

    图  7   井壁垂向有效应力与孔隙压力的关系

    Figure  7.   Relationship between vertical effective stress and the pore pressure

    图  8   川西X3井气体钻井井段井眼扩径率曲线

    Figure  8.   Borehole diameter expansion rate curve during gas drilling in Well X3 in Western Sichuan

    图  9   川西X3井气体钻井井段双井径测井曲线

    Figure  9.   Dual borehole diameter logging curve during gas drilling in Well X3 in Western Sichuan

    图  10   川西X3井2 209.00~2 228.00 m井段坍塌压力计算结果

    Figure  10.   Calculation results of collapse pressure of 2 209.00-2228.00 m section in Well X3 in Western Sichuan

  • [1] 蒋祖军, 张杰, 孟英峰, 等. 气体钻井井壁稳定性评价方法分析[J]. 天然气工业, 2007, 27(11): 68–70 doi: 10.3321/j.issn:1000-0976.2007.11.020

    JIANG Zujun, ZHANG Jie, MENG Yingfeng, et al. Analysis on the methods used to evaluate the wellbore stability of gas drilling[J]. Natural Gas Industry, 2007, 27(11): 68–70 doi: 10.3321/j.issn:1000-0976.2007.11.020

    [2] 李皋, 孟英峰, 刘厚彬, 等. 气体快速钻井井壁失稳研究[J]. 钻采工艺, 2013, 36(4): 26–30 doi: 10.3969/J.ISSN.1006-768X.2013.04.08

    LI Gao, MENG Yingfeng, LIU Houbin, et al. Evaluation methods of borehole instability in gas drilling[J]. Drilling & Production Technology, 2013, 36(4): 26–30 doi: 10.3969/J.ISSN.1006-768X.2013.04.08

    [3] 刘厚彬, 孟英峰, 万尚贤, 等. 高压气层气体钻井井壁稳定性分析[J]. 天然气工业, 2010, 30(11): 59–62 doi: 10.3787/j.issn.10000976.2010.11.016

    LIU Houbin, MENG Yingfeng, WAN Shangxian, et al. Analysis of wellbore stability during gas drilling through high-pressure gas formations[J]. Natural Gas Industry, 2010, 30(11): 59–62 doi: 10.3787/j.issn.10000976.2010.11.016

    [4] 邹灵战, 邓金根, 曾义金, 等. 气体钻井钻前水层预测与井壁稳定性研究[J]. 石油钻探技术, 2008, 36(3): 46–49 doi: 10.3969/j.issn.1001-0890.2008.03.011

    ZOU Lingzhan, DENG Jingen, ZENG Yijin, et al. Study of formation water production prediction and wellbore stability in gas drilling[J]. Petroleum Drilling Techniques, 2008, 36(3): 46–49 doi: 10.3969/j.issn.1001-0890.2008.03.011

    [5] 金衍, 陈勉, 卢运虎, 等. 一种气体钻井井壁稳定性分析的简易方法[J]. 石油钻采工艺, 2009, 31(6): 48–52 doi: 10.3969/j.issn.1000-7393.2009.06.012

    JIN Yan, CHEN Mian, LU Yunhu, et al. A simple means for gas drilling wellbore stability analysis[J]. Oil Drilling & Production Technology, 2009, 31(6): 48–52 doi: 10.3969/j.issn.1000-7393.2009.06.012

    [6] 刘新福, 綦耀光, 胡爱梅, 等. 单相水流动煤层气井流入动态分析[J]. 岩石力学与工程学报, 2011, 30(5): 960–966 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201105012

    LIU Xinfu, QI Yaoguang, HU Aimei, et al. Inflow performance analysis of single-phase water flow in coalbed methane wells[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 960–966 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201105012

    [7] 杨朝蓬, 高树生, 刘广道, 等. 致密砂岩气藏渗流机理研究现状及展望[J]. 科学技术与工程, 2012, 12(32): 8606–8613 doi: 10.3969/j.issn.1671-1815.2012.32.026

    YANG Zhaopeng, GAO Shusheng, LIU Guangdao, et al. The research status and progress on percolation mechanism of tight gas resvervoir[J]. Science Technology and Engineering, 2012, 12(32): 8606–8613 doi: 10.3969/j.issn.1671-1815.2012.32.026

    [8] 高树生, 熊伟, 刘先贵, 等. 低渗透砂岩气藏气体渗流机理实验研究现状及新认识[J]. 天然气工业, 2010, 30(1): 52–141 doi: 10.3787/j.issn.1000-0976.2010.01.014

    GAO Shusheng, XIONG Wei, LIU Xiangui, et al. Experimental research status and several novel understanding on gas percolation mechanism in low-permeability sandstone gas reservoirs[J]. Natural Gas Industry, 2010, 30(1): 52–141 doi: 10.3787/j.issn.1000-0976.2010.01.014

    [9] 郭世慧. 一种气体非线性渗流理论及其应用[D]. 北京: 中国地质大学(北京), 2009.

    GUO Shihui. The theory and application of a kind of gas nonlinear seepage[D]. Beijing: China University of Geosciences (Beijing), 2009.

    [10] 王晓琴, 吴聚, 冉艳, 等. 非线性渗流对异常高压气藏产能的影响[J]. 岩性油气藏, 2012, 24(4): 125–128 doi: 10.3969/j.issn.1673-8926.2012.04.025

    WANG Xiaoqin, WU Ju, RAN Yan, et al. Influence of non-liner flow on productivity of abnormal high pressure gas reservoir[J]. Lithologic Reservoirs, 2012, 24(4): 125–128 doi: 10.3969/j.issn.1673-8926.2012.04.025

    [11] 雷征东, 李相方, 程时清. 考虑拖曳力的出砂预测新模型及应用[J]. 石油钻采工艺, 2006, 28(1): 69–72, 86 doi: 10.3969/j.issn.1000-7393.2006.01.019

    LEI Zhengdong, LI Xiangfang, CHENG Shiqing. Modeling and application to sand prediction considering of drag force[J]. Oil Drilling & Production Technology, 2006, 28(1): 69–72, 86 doi: 10.3969/j.issn.1000-7393.2006.01.019

    [12] 邓金根. 井壁稳定预测技术[M]. 北京: 石油工业出版社, 2008.

    DENG Jingen. The predicting technique of wellbore stability[M]. Beijing: Petroleum Industry Press, 2008.

    [13]

    ZHANG Jincai, STANDIFIRD W B, ADESINA K, et al. Wellbore stability with consideration of pore pressure and drilling fluid interactions[R]. ARMA/USRMS 06-922, 2006.

    [14]

    CUI L, EKBOTE S, ABOUSLEIMAN Y. Effect of pore fluid conditions at the borehole wall on borehole stability[R]. ARMA-99-0187, 1999.

  • 期刊类型引用(11)

    1. 史配铭,李刚,刘振. SN0144i-XX小井眼测井仪器套捞一体打捞技术研究及应用. 石油工业技术监督. 2025(02): 1-6 . 百度学术
    2. 杨明,刘巨保,王田玉,丁宇奇,岳欠杯,杨宝. 井口无支撑段连续油管极限拉压载荷分析. 东北石油大学学报. 2023(01): 116-126+12 . 百度学术
    3. 邸德家,毛军,庞伟,张同义. 涪陵页岩水平井生产测井仪器遇卡处理及分析. 油气井测试. 2022(05): 54-57 . 百度学术
    4. 陆应辉,唐凯,张柟乔,任国辉,张清彬,李奔驰,李妍僖. 水平井桥塞射孔联作管串解卡力计算模型及应用. 长江大学学报(自然科学版). 2021(01): 79-86 . 百度学术
    5. 焦金龙. XS14-P2水平井落井电缆打捞技术. 油气井测试. 2021(02): 34-38 . 百度学术
    6. 张德龙,吴洪涛,贺宇迪,赵伟峰,刘佳欣. 连续油管内穿电缆测井工艺在水平井中的应用. 化学工程与装备. 2021(05): 110-111 . 百度学术
    7. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
    8. 唐凯,陈锋,陆应辉,任国辉,李奔驰,杨登波. 水平井桥射联作电缆及其弱点的受力分析. 测井技术. 2021(04): 445-450 . 百度学术
    9. 陆应辉,唐凯,任国辉,聂华富,杨登波. 水平井泵送分簇射孔落鱼打捞工艺及应用. 长江大学学报(自然科学版). 2019(05): 23-28+6 . 百度学术
    10. 徐学利,王涛,张世虎,李希,张广利,董会,李霄,康国强,白自龙. 接触载荷对CT80连续油管摩擦磨损性能的影响. 材料保护. 2019(11): 8-12 . 百度学术
    11. 艾白布·阿不力米提,庞德新,王一全,郭新维,杨文新,焦文夫. 连续油管打捞连续油管关键工具研究与应用. 石油钻探技术. 2019(06): 89-95 . 本站查看

    其他类型引用(2)

图(10)
计量
  • 文章访问数:  10894
  • HTML全文浏览量:  5592
  • PDF下载量:  63
  • 被引次数: 13
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-11-27
  • 网络出版日期:  2019-01-16
  • 刊出日期:  2018-12-31

目录

    /

    返回文章
    返回