可溶桥塞整体式卡瓦结构优化设计

郝地龙, 何霞, 王国荣, 方兴, 廖代胜, 方海辉

郝地龙, 何霞, 王国荣, 方兴, 廖代胜, 方海辉. 可溶桥塞整体式卡瓦结构优化设计[J]. 石油钻探技术, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151
引用本文: 郝地龙, 何霞, 王国荣, 方兴, 廖代胜, 方海辉. 可溶桥塞整体式卡瓦结构优化设计[J]. 石油钻探技术, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151
HAO Dilong, HE Xia, WANG Guorong, FANG Xing, LIAO Daisheng, FANG Haihui. Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151
Citation: HAO Dilong, HE Xia, WANG Guorong, FANG Xing, LIAO Daisheng, FANG Haihui. Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151

可溶桥塞整体式卡瓦结构优化设计

基金项目: 

四川省青年基金项目“极端工况下压缩式封隔器胶筒-化学-力多场耦合行为及密封机理研究” 2017JQ0029

详细信息
    作者简介:

    郝地龙(1993—),男,云南曲靖人,2017年毕业于长春大学机械工程专业,在读硕士研究生,主要从事封隔器设计方面的研究工作。E-mail:2608083214@qq.com

  • 中图分类号: TE925+.2

Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug

  • 摘要:

    为提高可溶桥塞整体式卡瓦的锚定效果,以适用于ϕ95.0 mm可溶桥塞的整体式卡瓦为例,对其结构进行了优化设计。通过整体式卡瓦断裂试验和断裂数值模拟发现,在轴向载荷作用下,整体式卡瓦应力槽在其长度1/2处所受应力达到抗拉强度时,卡瓦断裂张开。基于此规律,通过数值模拟将整体式卡瓦的结构优化为采用6个均匀分布的应力槽,应力槽长25.0 mm、厚2.0 mm、宽4.0 mm,距前端25.0 mm、后端10.0 mm。结构优化后卡瓦的断裂力为72 kN,达到了ϕ95.0 mm可溶桥塞坐封时卡瓦断裂力的要求,且数值模拟及断裂试验均表明,结构优化后的整体式卡瓦不再呈C字形张开,其承压能力更强,卡瓦的锚定效果更好。研究结果表明,可溶桥塞整体式卡瓦的结构经优化设计后,其断裂力明显降低,能避免呈C字形张开,其锚定效果得到增强。

    Abstract:

    In order to improve the anchoring performance of the integral slip of a soluble bridge plug, the team took the design of the integral slip suitable for a ϕ95.0 mm soluble bridge plug as an example, and then proposed a structural optimization design.According to the results from fracture experiments and numerical simulation of the integral slip, when the groove length 1/2 and above reach tensile strength under the effect of axial force, the slip fracture opens.Based on this law, the structure of stress groove was optimized by a numerical simulation.The integral slip adopted the form of six stress grooves, the length, thickness and width of stress groove were 25.0 mm, 2.0 mm and 4.0 mm, respectively.The distance from the front end and back end was 25.0 mm and 10.0 mm, respectively.Under this structure, the breaking force of the slip was 72 kN, which met the technical requirements of the slip breaking force when the ϕ95.0 mm soluble bridge plug was sealed.Moreover, numerical simulations and fracture experiments both showed that the integral slip after structural optimization could avoid C-shaped openings, resulting in better pressure bearing capacity and better anchoring performance of the slip.The results also demonstrated that, after structural optimization design, the breaking force of the integral slip of soluble bridge plug experienced an obvious decrease.The integral slip is capable of avoiding a C-shaped opening, which can improve the anchoring performance.

  • 图  1   整体式卡瓦的结构尺寸

    Figure  1.   Structure and size of the integral slip

    图  2   整体式卡瓦张开示

    Figure  2.   Open diagram of the integral slip

    图  3   整体式卡瓦断裂形状

    Figure  3.   Fracture shape of the integral slip

    图  4   国标试件尺寸

    Figure  4.   The size of national standard specimen

    图  5   数值模拟模型

    Figure  5.   Numerical simulation model

    图  6   材料a和b加工的整体式卡瓦的应力分布

    Figure  6.   Stress distribution of the integral slip of Material a and Material b

    图  7   应力槽的应力分布

    Figure  7.   Stress distribution of the stress groove

    图  8   应力槽结构示意

    Figure  8.   Schematic diagram of the stress groove structure

    图  9   锥体反作用力和卡瓦的Mises应力模拟结果

    Figure  9.   Simulation results of Mises stress distribution of cone reaction force and slip

    图  10   模拟模型及网格划分

    Figure  10.   Simulation model and grid partition

    图  11   卡瓦断裂过程

    Figure  11.   Fracture process of slip

    图  12   卡瓦断裂试验结果

    Figure  12.   Experiment results of slip fracture

    表  1   材料a和b的力学性能参数

    Table  1   Mechanics parameters of Material a and Material b

    材料 弹性模量/
    MPa
    泊松比 屈服强度/
    MPa
    抗拉强度/
    MPa
    a 5 615 0.25 201.31 248
    b 7 843 0.25 148.00 215
    下载: 导出CSV

    表  2   应力槽结构参数

    Table  2   Structural parameters of the stress groove

    结构 前端距/mm 后端距/mm
    A 15.0 20.0
    B 25.0 10.0
    C 30.0
    下载: 导出CSV
  • [1]

    HAMMERLINDL D J.Movement, forces, and stresses associated with combination tubing strings sealed in packers[J].Journal of Petroleum Technology, 1977, 29(2):195-208. doi: 10.2118/5143-PA

    [2]

    SHAHANI A R, SHARIFI S.Contact stress analysis and calculation of stress concentration factors at the tool joint of a drill pipe[J].Materials & Design, 2009, 30(9):3615-3621.

    [3]

    LIN Z C.The strength analysis and structure optimization of packer slip based on ANSYS[J].Applied Mechanics and Materials, 2013, 423/424/425/426:1967-1971. http://www.scientific.net/AMM.423-426.1967

    [4]

    CAI Maojia, CAO Yinping, WANG Xin, et al.Analysis of interaction between HTHP completion packer's slip and the casing wall[J].Applied Mechanics and Materials, 2013, 423-426:866-870. doi: 10.4028/www.scientific.net/AMM.423-426

    [5] 祝效华, 晁圣棋, 刘祖林, 等.基于试验和数值仿真的封隔器卡瓦结构优化[J].系统仿真学报, 2016, 28(11):2729-2735. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201611012

    ZHU Xiaohua, CHAO Shengqi, LIU Zulin, et al.Structural optimization of packer slips based on experimental and numerical simulation[J].Journal of System Simulation, 2016, 28(11):2729-2735. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201611012

    [6] 刘景超, 王晓, 马认琦, 等.整体式卡瓦断裂压力的试验研究[J].钻采工艺, 2016, 39(4):67-69. doi: 10.3969/J.ISSN.1006-768X.2016.04.20

    LIU Jingchao, WANG Xiao, MA Renqi, et al.Experimental study on fracture pressure of integral slips[J].Drilling & Production Technology, 2016, 39(4):67-69. doi: 10.3969/J.ISSN.1006-768X.2016.04.20

    [7] 王迪, 何世平, 张熹.封隔器卡瓦接触应力研究[J].实验力学, 2006, 21(3):351-356. doi: 10.3969/j.issn.1001-4888.2006.03.015

    WANG Di, HE Shiping, ZHANG Xi. Study on contact stress of packer slips[J].Experimental Mechanics, 2006, 21(3):351-356. doi: 10.3969/j.issn.1001-4888.2006.03.015

    [8] 邓民敏.封隔器用整体式卡瓦设计原理与设计方法的研究[D].北京: 石油大学(北京), 1998: 47-52.

    DENG Minmin.Study on the design principle and design method of integral slips for packers[D].Beijing: University of Petroleum(Beijing), 1998: 47-52.

    [9] 何霞, 李明, 王国荣, 等.悬挂封隔器卡瓦作用区段套管应力分布研究[J].应用数学和力学, 2017, 38(9):1021-1028. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201709006

    HE Xia, LI Ming, WANG Guorong, et al.Study on the stress distribution of the casing section of the suspended packer slip section[J].Applied Mathematics and Mechanics, 2017, 38(9):1021-1028. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201709006

    [10] 张俊亮, 刘汝福, 李丽云, 等.整体式卡瓦牙型结构优化及试验研究[J].石油机械, 2012, 40(6):83-86. http://www.cnki.com.cn/Article/CJFDTotal-SYJI201206021.htm

    ZHANG Junliang, LIU Rufu, LI Liyun, et al.Optimization and experimental study of integral slips type[J].China Petroleum Machinery, 2012, 40(6):83-86, 97. http://www.cnki.com.cn/Article/CJFDTotal-SYJI201206021.htm

    [11] 喻冰, 赵维斌, 雷璐侨, 等.非金属桥塞镶齿卡瓦的有限元分析及优化[J].石油机械, 2013, 41(8):68-70, 75. doi: 10.3969/j.issn.1001-4578.2013.08.017

    YU Bing, ZHAO Weibin, LEI Luqiao, et al.Finite element analysis and optimization of non-metallic bridge plug toothed slips[J].China Petroleum Machinery, 2013, 41(8):68-70, 75. doi: 10.3969/j.issn.1001-4578.2013.08.017

    [12] 马认琦, 孔学云, 鞠少栋, 等.海上完井封隔器新型锚定卡瓦咬入套管分析[J].石油机械, 2014, 42(9):65-68. doi: 10.3969/j.issn.1001-4578.2014.09.016

    MA Renqi, KONG Xueyun, JU Shaodong, et al.Analysis of new anchoring slips of packer for offshore completion[J].China Petroleum Machinery, 2014, 42(9):65-68. doi: 10.3969/j.issn.1001-4578.2014.09.016

    [13] 高志华, 魏江兵, 张涔, 等.利用应变片测量金属弹性模量[J].物理与工程, 2017, 27(2):37-41, 46. doi: 10.3969/j.issn.1009-7104.2017.02.008

    GAO Zhihua, WEI Jiangbing, ZHANG Cen, et al.Using strain gauge to measure elastic modulus of metals[J].Physics and Engineering, 2017, 27(2):37-41, 46. doi: 10.3969/j.issn.1009-7104.2017.02.008

    [14] 匡博.盘式制动器制动噪声有限元分析[D].长沙: 湖南大学, 2013: 11-12.

    KUANG Bo.Finite element analysis of disc brakenoise[D].Changsha: Hunan University, 2013: 11-12.

    [15] 聂洪波.三点弯曲法测试硬质合金弹性模量[J].粉末冶金材料科学与工程, 2010, 15(6):606-610. doi: 10.3969/j.issn.1673-0224.2010.06.012

    NIE Hongbo.Measurement of elastic modulus of cemented carbide by three-point bending[J].Materials Science and Engineering of Powder Metallurgy, 2010, 15(6):606-610. doi: 10.3969/j.issn.1673-0224.2010.06.012

    [16] 陈毅彬, 周建忠, 黄舒, 等.基于ABAQUS的激光板料成形的数值模拟研究[J].应用激光, 2007, 27(3):175-180. doi: 10.3969/j.issn.1000-372X.2007.03.003

    CHEN Yibin, ZHOU Jianzhong, HUANG Shu, et al.Numerical simulation of laser sheet metal forming based on ABAQUS[J].Applied Laser, 2007, 27(3):175-180. doi: 10.3969/j.issn.1000-372X.2007.03.003

  • 期刊类型引用(22)

    1. 姜志生,徐慧,何岩峰,刘楠楠,陈尚平,史幸,魏文基,陈晟. 多元热流体开发稠油出砂机理及规律(英文). 常州大学学报(自然科学版). 2024(02): 48-60 . 百度学术
    2. 徐珂,刘敬寿,张辉,张冠杰,张滨鑫,王海应,张禹,来姝君,钱子维,强剑力. 复杂构造区全层系地质力学建模及其地质与工程应用. 地学前缘. 2024(05): 195-208 . 百度学术
    3. 董长银,李经纬,周博,黄亮,刘亚宾,李强,黄有艺. 出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法. 安全与环境学报. 2023(06): 1859-1867 . 百度学术
    4. 韩超,黄凡,职文栋,但顺华,万文胜,王琛. 基于核磁共振技术的疏松砂岩油藏微粒运移伤害机理. 科学技术与工程. 2023(20): 8621-8633 . 百度学术
    5. 李敬彬,程康,胡静茹,黄中伟,王海柱. 水力喷射径向水平井回灌增注特性可视化试验研究. 流体机械. 2023(11): 1-8 . 百度学术
    6. 鹿晓涵,侯满福,黄国辉,王永军,杨爱英,胡围焱. BQ地区东营组疏松砂岩试油测试压差确定方法. 油气井测试. 2023(06): 8-12 . 百度学术
    7. 赵衍彬. 利用数字岩心方法评价稠油开采方式对渗透率的影响研究. 精细石油化工. 2022(01): 45-49 . 百度学术
    8. Chang-Yin Dong,Bo Zhou,Fan-Sheng Huang,Lei Zhang,Yi-Zhong Zhao,Yang Song,Jun-Yu Deng. Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs. Petroleum Science. 2022(01): 279-295 . 必应学术
    9. 孙帅帅,赵成龙,王瑞祥,张启龙,石磊. 渤海XX油田防砂控水完井设计研究及案例分析. 科学技术创新. 2022(12): 177-180 . 百度学术
    10. 董长银,陈琛,周博,隋义勇,王兴,王金忠. 油气藏型储气库出砂机理及防砂技术现状与发展趋势展望. 石油钻采工艺. 2022(01): 43-55 . 百度学术
    11. 张启龙,韩耀图,龚宁,李进,陈卓. 基于LS-SVM的渤海油田防砂设计优化方法研究. 石油机械. 2021(01): 110-117 . 百度学术
    12. 林海,张晓诚,谢涛,庹海洋,刘海龙,孙金. 基于断层稳定性的疏松砂岩临界注水压力研究. 重庆科技学院学报(自然科学版). 2021(02): 29-33+49 . 百度学术
    13. 孙珂,陈清华,徐珂,孙建芳. 油水比例变化对岩石力学性质的影响及出砂分析——以金湖凹陷秦营断块区阜宁组储层为例. 中国矿业大学学报. 2021(05): 909-922 . 百度学术
    14. 董长银,闫切海,周博,王宇宾,邓君宇,宋洋,王力智. 弱胶结储层微观出砂形态与出砂机理可视化实验模拟研究. 石油钻采工艺. 2020(02): 227-235 . 百度学术
    15. 徐珂,田军,杨海军,张辉,王志民,袁芳,王海应. 深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例. 中国矿业大学学报. 2020(04): 708-720 . 百度学术
    16. 李进,许杰,龚宁,韩耀图,高斌. 渤海油田疏松砂岩储层动态出砂预测. 西南石油大学学报(自然科学版). 2019(01): 119-128 . 百度学术
    17. 徐珂,戴俊生,商琳,房璐,冯建伟,杜赫. 南堡凹陷现今地应力特征及影响因素. 中国矿业大学学报. 2019(03): 570-583 . 百度学术
    18. 董长银,闫切海,李彦龙,徐鸿志,周玉刚,尚校森,陈强,宋洋. 天然气水合物储层颗粒级尺度微观出砂数值模拟. 中国石油大学学报(自然科学版). 2019(06): 77-87 . 百度学术
    19. REN Shaoran,LIU Yanmin,GONG Zhiwu,YUAN Yujie,YU Lu,WANG Yanyong,XU Yan,DENG Junyu. Numerical Simulation of Water and Sand Blowouts When Penetrating Through Shallow Water Flow Formations in Deep Water Drilling. Journal of Ocean University of China. 2018(01): 17-24 . 必应学术
    20. 刘浩伽,李彦龙,刘昌岭,董长银,吴能友,孙建业. 水合物分解区地层砂粒启动运移临界流速计算模型. 海洋地质与第四纪地质. 2017(05): 166-173 . 百度学术
    21. 董长银,周崇,钟奕昕,王鹏,崔明月,曾思睿,尚校森. 中等强度砂岩饱水力学参数变化试验及动态出砂规律. 中国石油大学学报(自然科学版). 2017(06): 108-116 . 百度学术
    22. 陈欢庆,石成方,王珏,姚尧. 稠油热采储层精细油藏描述研究进展. 断块油气田. 2016(05): 549-553 . 百度学术

    其他类型引用(15)

图(12)  /  表(2)
计量
  • 文章访问数:  10020
  • HTML全文浏览量:  5489
  • PDF下载量:  101
  • 被引次数: 37
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-09-27
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2018-12-31

目录

    /

    返回文章
    返回