The Effect of Geometrical Morphology of Rigid Lost Circulation Material on Its Retention Behavior in Fractures
-
摘要: 为了更合理地选择堵漏材料、设计高性能堵漏浆配方,研究了不同几何形态堵漏材料在裂缝中的滞留行为。采用理论分析和室内试验相结合的方法,考虑堵漏材料粒级、几何形状和裂缝面粗糙度等因素,设计并进行了粗糙缝面裂缝内固相滞留试验,考察了堵漏材料的几何形态对其在裂缝中滞留行为的影响。试验发现:粒级对球状和片状堵漏材料在裂缝中的滞留行为均有影响,但对球状堵漏材料滞留行为的影响更显著;相同粒级条件下,片状堵漏材料在裂缝中的滞留概率高于球状堵漏材料。研究结果表明:球状堵漏材料的优点是封堵迅速、封堵效率高,但其封堵质量受粒级影响显著,对缝宽变化适应性较差;片状堵漏材料的优点是对缝宽变化适应性强、滞留概率高;将球状与片状堵漏材料复配,可有效提高其滞留概率,又好又快地封堵裂缝。Abstract: In order to select the lost circulation material more reasonably and to design the high performance plugging slurry formulations,the retention behavior of different lost circulation material of various geometrical morphologies in the fractures was studied.Researchers combined theoretical analysis with laboratory tests,and took into consideratoin the influence of grain size grade of lost circulation material,geometrical morphology and fracture surface roughness.They then designed and carried out solid phase retention tests in the rough face fractures to investigate the effect of geometric shape of plugging material on its retention behavior(and embedment)in fractures was investigated.It was found that the grain size grade had an effect on the retention behavior of both spherical material and flaky material in fractures. In fact,the effect on the retention behavior of spherical material was more significant.Specifically,when the material was of the same grain size grade,the retention probability of the flaky material in the fractures was higher than that of the spherical material.The results showed that the spherical material had advantages,including its rapid plugging and high plugging efficiency.However,its plugging quality was seriously affected by grain size grade,and the adaptability to the variation of slot width was poor,while the advantages of flaky material were its strong adaptability to slot width variation and high retention probability.The combination of spherical lost circulation material and flaky lost circulation material could effectively improve the retention and embedment probability and achieve better fracture plugging.
-
-
[1] KANG Yili,XU Chengyuan,YOU Lijun,et al.Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J].Journal of Natural Gas Science and Engineering,2014,20:67-73.
[2] XU Chengyuan,KANG Yili,TANG Long,et al.Prevention of fracture propagation to control drill-in fluid loss in fractured tight gas reservoir[J].Journal of Natural Gas Science and Engineering,2014,21:425-432.
[3] 罗向东,罗平亚.屏蔽式暂堵技术在储层保护中的应用研究[J].钻井液与完井液,1992,9(2):19-27. LUO Xiangdong,LUO Pingya.Research on the application of temporary shielding method in reservoir protection[J].Drilling Fluid Completion Fluid,1992,9(2):19-27. [4] ABRAMS A.Mud design to minimize rock impairment due to particle invasion[J].Journal of Petroleum Technology,1976,29(5):586-592.
[5] 蒋官澄,胡成亮,熊英,等.广谱"油膜"暂堵钻井液体系研究[J].中国石油大学学报(自然科学版), 2006,30(4):53-57. JIANG Guancheng,HU Chengliang,XIONG Ying,et al.Study on system of broad-spectrum oil-film temporary plugging drilling fluid[J].Journal of China University of Petroleum (Edition of Natural Science),2006,30(4):53-57. [6] 康毅力,许成元,唐龙,等.构筑井周坚韧屏障:井漏控制理论与方法[J].石油勘探与开发,2014,41(4):473-479. KANG Yili,XU Chengyuan,TANG Long,et al.Constructing a tough shield around the wellbore:theory and method for lost-circulation control[J].Petroleum Exploration and Development,2014,41(4):473-479. [7] 李志勇,鄢捷年,王友兵,等.保护储层钻井液优化设计新方法及其应用[J].钻采工艺,2006,29(2):85-87. LI Zhiyong,YAN Jienian,WANG Youbing,et al.New method and application for optimizing design of protected reservoir drilling fluid[J].Drilling Production Technology,2006,29(2):85-87. [8] HANDS N,KOWBEL K,MAIKRANZ S,et al.Drill-in fluid reduces formation damage,increases production rates[J].Oil and Gas Journal,1998,96(28):65-69.
[9] 康毅力,郑德壮,刘修善,等.固相侵入对裂缝性碳酸盐岩应力敏感性的影响[J].新疆石油地质,2012,33(3):366-369. KANG Yili,ZHENG Dezhuang,LIU Xiushan,et al.Impact of solids invasion on stress sensitivity in fractured carbonate reservoirs[J].Xinjiang Petroleum Geology,2012,33(3):366-369. [10] 李松,康毅力,李大奇,等.缝洞型储层井壁裂缝宽度变化ANSYS模拟研究[J].天然气地球科学,2011,22(2):340-346. LI Song,KANG Yili,LI Daqi,et al.ANSYS simulation on fracture width variation in fracture-cavity reservoirs[J].Natural Gas Geoscience,2011,22(2):340-346. [11] DICK M A,HEINZ T J,SVOBODA C F,et al.Optimizing the selection of bridging particles for reservoir drilling fluids[R].SPE 58793,2000.
[12] KNAPP R B,CHIARAPPA M L,DURHAM W B.An experimental exploration of the transport and capture of abiotic colloids in a single fracture[J].Water Resources Research,2000,36(11):3139-3149.
[13] YAN Yiguang,KOPLIK J.Transport and sedimentation of suspended particles in inertial pressure-driven flow[J].Physics of Fluids,2009,21(1):297.
[14] XU Chengyuan,KANG Yili,YOU Lijun,et al.Lost-circulation control for formation-damage prevention in naturally fractured reservoir:mathematical model and experimental study[J].SPE Journal,2017,22(5):1654-1670.
[15] AGBANGLA G C,CLIMENT ,BACCHIN P.Numerical investigation of channel blockage by flowing microparticles[J].Computers Fluids,2014,94(2):69-83.
[16] LO T S,KOPLIK J.Suspension flow and sedimentation in self-affine fractures[J].Physics of Fluids,2012,24(5):835-861.
[17] MEHRABIAN A,JAMISON D E,TEODORESCU S G.Geomechanics of lost-circulation events and wellbore-strengthening operations[J].SPE Journal,2015,20(6):437-440.
[18] OORT E V,FRIEDHEIM J,PIERCE T,et al.Avoiding losses in depleted and weak zones by constantly strengthening wellbores[R].SPE 125093,2009.
[19] 张希文,李爽,张洁,等.钻井液堵漏材料及防漏堵漏技术研究进展[J].钻井液与完井液,2009, 26(6):74-76,79. ZHANG Xiwen,LI Shuang,ZHANG Jie,et al.Research progress of loss control material and loss control technology[J].Drilling Fluid Completion Fluid,2009,26(6):74-76,79. [20] 王在明,邱正松,徐加放,等.复合堵漏中平衡区域及其在新型堵漏仪中的应用[J].石油学报,2007,28(1):143-145. WANG Zaiming,QIU Zhengsong,XU Jiafang,et al.Balance area of compound lost circulation control and its application in novel lost circulation simulator[J].Acta Petrolei Sinica,2007,28(1):143-145. [21] BROWN S R.Fluid flow through rock joints:the effect of surface roughness[J].Journal of Geophysical Research Solid Earth,1987,92(B2):1337-1347.
[22] DAI J,GRACE J R.Blockage of constrictions by particles in fluid-solid transport[J].International Journal of Multiphase Flow,2010,36(1):78-87.
[23] 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68. WANG Yuan,SU Baoyu.Research on the behavior of fluid flow in a single fracture and its equivalent hydraulic aperture[J].Advances in Water Science,2002,13(1):61-68. [24] BROWN S R,SCHOLZ C H.Broad bandwidth study of the topography of natural rock surfaces[J].Journal of Geophysical Research Solid Earth,1985,90(B14):12575-12582.
[25] LI Song,KANG Yili,LI Daqi,et al.Modeling herschel-bulkely drilling fluid flow in a variable radial fracture[J].Journal of Porous Media,2014,17(3):239-254.
[26] WINDARTO,GUNAWAN A Y,SUKARNO P,et al.Modelling of formation damage due to mud filtrate invasion in a radial flow system[J].Journal of Petroleum Science Engineering,2012,100:99-105.
-
期刊类型引用(12)
1. 陈建国,汪伟,都伟超. 渝西大安区块超深层页岩气水平井钻井提速关键技术研究. 钻探工程. 2024(04): 154-162 . 百度学术
2. 龙志平,陈士奎,曹建山,丁锦鹤. 小井眼钻井技术在页岩气井的实践与认识. 石油机械. 2023(04): 30-38 . 百度学术
3. 杨哲,李晓平,万夫磊. 四川长宁页岩气井身结构优化探讨. 钻采工艺. 2021(03): 20-23 . 百度学术
4. 王建龙,于志强,苑卓,冯冠雄,柳鹤,郭云鹏. 四川盆地泸州区块深层页岩气水平井钻井关键技术. 石油钻探技术. 2021(06): 17-22 . 本站查看
5. 石崇东,王万庆,史配铭,杨勇. 盐池区块深层页岩气水平井钻井关键技术研究. 石油钻探技术. 2021(06): 23-28 . 本站查看
6. 郑德帅. 可旋转钻柱定向钻进工具设计及测试. 石油钻探技术. 2021(06): 81-85 . 本站查看
7. 孙焕泉,周德华,蔡勋育,王烽,冯动军,卢婷. 中国石化页岩气发展现状与趋势. 中国石油勘探. 2020(02): 14-26 . 百度学术
8. 史配铭,薛让平,王学枫,王万庆,石崇东,杨勇. 苏里格气田致密气藏水平井优快钻井技术. 石油钻探技术. 2020(05): 27-33 . 本站查看
9. 彭兴,周玉仓,龙志平,张树坤. 南川地区页岩气水平井优快钻井技术进展及发展建议. 石油钻探技术. 2020(05): 15-20 . 本站查看
10. 徐云龙,张居波,席境阳,赵洪山. 焦页XX-HF井近钻头仪器“落鱼”打捞技术. 探矿工程(岩土钻掘工程). 2019(12): 35-39 . 百度学术
11. 刘伟,何龙,胡大梁,李文生,焦少卿. 川南海相深层页岩气钻井关键技术. 石油钻探技术. 2019(06): 9-14 . 本站查看
12. 窦玉玲,唐志军,徐云龙,席镜阳. 涪陵江东区块三维水平井优快钻井技术——以焦页91平台为例. 探矿工程(岩土钻掘工程). 2019(02): 55-59 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 4341
- HTML全文浏览量: 147
- PDF下载量: 6813
- 被引次数: 14