Key Drilling Technology for Deep Shale Gas Reservoirs in the Southeastern Sichuan Region
-
摘要: 针对川东南地区页岩气储层埋藏深、岩石强度高、地质构造复杂及机械钻速低、钻井周期长的问题,通过对比分析国内外深层页岩气钻井技术,总结了川东南地区深层页岩气钻井面临的主要技术难点,结合中浅层页岩气钻井技术研究成果与应用情况,从井身结构优化、钻井提速技术、井眼轨迹控制、高密度油基钻井液和深层页岩气固井技术等方面入手,研究形成了适合于川东南深层页岩气的钻井关键技术,并在涪陵地区平桥和江东区块及丁山、威荣、永川等地区的深层页岩气井中进行了应用,取得了显著效果。其中,与应用钻井关键技术前相比,焦页74-2HF井的机械钻速提高了73.48%,钻井周期缩短了42.89%;焦页187-2HF井的机械钻速提高了37.26%,钻井周期缩短了25.79%。研究认为,川东南地区深层页岩气钻井关键技术,对该地区深层页岩气钻井技术方案设计和钻井提速提效具有较强的借鉴和指导作用。Abstract: Due to deep burial depth,high rock strength and complex geological structures of shale reservoirs in Southeastern Sichuan,shale gas drilling in this region has encountered the challenges of low rate of penetration and long drilling period.Through a comparative analysis of deep shale gas drilling technologies in China and abroad,and by reviewing a summary of the main technical challenges faced by deep shale gas drilling in Southeastern Sichuan,we determined the key technologies to drill in deep shale gas formations in the Southeastern Sichuan Region.Factors included casing program optimization,rapid drilling,wellbore trajectory control,high-density oil-based drilling fluids,and deep shale gas cementing optimization,while considering research results and applications of middle-shallow shale gas drilling technologies.These technologies have been used in deep shale gas wells in blocks like Pingqiao,Jiangdong of Fuling Area and area like Dingshan,Weirong,Yangchuan,and achieved significant positive results.Among them,the rate of penetration of Well JY74-2HF was increased by 73.48%,and the drilling cycle was shortened by 42.89%; the rate of penetration of Well JY187-2HF was increased by 37.26%,and the drilling cycle was shortened by 25.79%.The research results are significant in that they can provide reference points and excellent guidance for and drilling plan design,rapid drilling and efficiency enhancements of deep shale gas wells in China.
-
Keywords:
- deep shale gas /
- horizontal well /
- casing program /
- wellbore trajectory /
- increase ROP
-
水平井、大位移井和分支井等复杂结构井钻井过程中,井场人员需要实时了解各种井下参数,如井斜角、方位角和工具面等[1-3]。钻井液脉冲传输是钻井过程中应用最为广泛的数据传输方式,其基本原理是控制井下脉冲发生器按照一定编码规则工作,不断改变钻杆里钻井液的压力,以压力波脉冲的形式将测量数据传送至地面[4-8]。然而,经过编码后的脉冲信号在钻井液中传播时不可避免地会受到井场电压、地面钻井泵、钻井液中气泡以及运动钻具等各种噪声源的干扰,必须经过去噪和识别处理才能得到井下真实的测量数据。针对脉冲位置调制(pulse position modulation,PPM)码钻井液脉冲信号,李艳军[9]提出了一种基于低通滤波和方波相关的信号去噪方法,段友祥等人[10]提出了一种基于可信度分析的信号识别方法,胡永健等人[11]提出了一种基于小波变换和自动阈值调节的信号处理方法,这些方法均取得了一定效果。然而,在深井、超深井和小井眼等复杂井眼环境下,编码脉冲信号的路径损耗和码间干扰明显增强,对钻井液脉冲信号处理提出了更高的要求[12-15]。为了满足微弱PPM码钻井液脉冲信号处理要求,笔者提出了一种基于优化变分模态分解(variational mode decomposition,VMD)和互相关的钻井液脉冲信号处理方法,并利用现场资料与传统方法进行对比,验证了该方法在压制杂波、保留编码脉冲特征和抗异常干扰等方面的有效性。
1. 传统信号处理方法及其不足
PPM编码是一种常见的钻井液脉冲信号编码方式,其本质是以时间间隔为数据流传输信息[4,9]。PPM码钻井液脉冲信号传统的处理方法主要包括带通滤波、阈值设定和峰值检测等[2,9,11]。带通滤波算法可以用来对原始信号进行去噪,阈值设定算法可以用来去除杂波,峰值检测算法可以用来识别去噪后的信号。具体步骤是:1)对原始钻井液脉冲信号进行带通滤波处理,得到去噪后的信号;2)对去噪后的信号进行阈值设定,去除杂波;3)对去除杂波的信号进行峰值检测,得到各有效脉冲的位置;4)根据同步头中各脉冲的位置关系得到数据帧的起始位置;5)划分数据块,数据块中有效脉冲的位置所对应的十六进制数即为该数据块内波形所代表的码值;6)根据各测量参数的位数,将各数据块对应的码值进行组合,最终根据各测量参数的量程,将组合后的十六进制数转换成井下真实的测量结果。
钻井液脉冲信号是一种非平稳信号,传统的带通滤波、阈值设定等方法的参数设置依赖于人工选择,在复杂井眼环境下存在去噪效果较差和适应性不强等问题。
2. 改进的信号处理方法
变分模态分解是一种自适应、完全非递归的信号分解估计方法,通过迭代搜寻变分模型最优解来确定每个分量的频率中心和带宽,能够自适应地实现信号的频域剖分及各分量的有效分离。此外,由于钻井液脉冲信号中噪声信号与有效脉冲之间相的关性较弱,应用互相关法可以有效抑制干扰噪声。互相关法不考虑信号的频率,对未知频率的信号也可以进行处理,适合有效脉冲的检测。
基于上述思路,提出了一种基于优化变分模态分解和互相关的钻井液脉冲信号处理方法。该方法主要包括粒子群优化算法(particle swarm optimization, PSO)、VMD算法和互相关算法:PSO算法用来对VMD算法中的惩罚因子α和分解个数K进行寻优[3,16-17];VMD算法用来分解原始信号,去除干扰噪声[16-18];互相关算法用来识别去噪后的信号[9,19-20]。具体处理步骤为:
1)初始化PSO各项参数,构造适度函数,设置惩罚因子α和分解个数K的寻优范围。通常,适度函数可以设置为原始信号和重构信号的均方根误差与原始信号和重构信号的互相关系数之比。评估每个粒子的适度函数值,判断各粒子是否满足种群进化停止条件,若不满足则继续寻优,直到满足最大种群进化预设值[3,16-17]。
2)用获得的最优参数对钻井液脉冲原始信号进行VMD分解,得到本征模态分量。即:
x(t)=K∑k=1uk(t) (1) uk(t)=Ak(t)cos(φk(t)) (2) 式中:x(t)为原始信号;uk(t)为第k个模态的信号;Ak(t)和
φk(t) 为该模态的瞬时幅度和相位[16-18]。在较小的时间范围内,uk(t)可以看作谐波信号,能量主要集中在频率fk处。VMD同时计算所有模式波形及其中心频率,该过程可以看作寻找一组使变分约束问题最小化的uk(t)和fk。通过引入惩罚因子α和拉格朗日乘子λ,可使相应的变分约束问题转化为非约束变分问题,其增广拉格朗日函数定义为[16-18]:
L(uk(t),fk,λ(t))=aK∑k=1‖ (3) 式中:*代表卷积;假定2个函数分别为p(t)和q(t),则<p(t), q(t)>表示内积,||p(t)||
_2^2 表示2-范数。对增广拉格朗日函数进行时频域转换后可以求取对应的极值解,从而得到模态分量和中心频率的表达式[16-18]。对于第 n +1次迭代,满足:
\hat u_k^{n + 1}\left( \omega \right) = \frac{{\hat x_k^{n + 1}\left( \omega \right) - \displaystyle\sum\limits_{i \ne K} {{{\hat u}_k}\left( \omega \right) + \dfrac{\hat \lambda \left( \omega \right)}{2}} }}{{1 + 2\alpha {{\left( {\omega - {\omega _k}} \right)}^2}}} (4) \,其中\qquad\qquad \omega _k^{n + 1} = \frac{{\displaystyle\int_0^\infty {\omega {{\left| {{{\hat u}_k}\left( \omega \right)} \right|}^2}{\rm{d}}\omega } }}{{\displaystyle\int_0^\infty {{{\left| {{{\hat u}_k}\left( \omega \right)} \right|}^2}{\rm{d}}\omega } }} \qquad\qquad (5) 式中,包含“^”上标的变量为不包含“^”上标变量的傅里叶变换。
通过不断迭代即可得到x(t)的K个模态分量。
3)根据各本征模态分量的频谱特征,将其依次分为随机噪声、泵冲信号、基线信号和有用信号,将有用信号模态分量叠加可以得到去噪后的信号。
4)构造同步头相关器,将去噪后的信号与同步头相关器进行互相关处理,相关后波形最大值所对应的位置即为数据帧的起始位置。基于同步头相关器进行起始位置确定时的互相关函数满足:
{r_{xy}}\left( \tau \right) = \sum\limits_{t = - \infty }^{ + \infty } {x\left( t \right)y\left( {t - \tau } \right)} (6) 式中:rxy为相关值;x(t)为待相关信号;y(t)为同步头相关器。
需要注意的是,相关器中各点的平均值应为零,否则输出将随基线压力而变化。常用的相关器包括矩形相关器、三角形相关器和礼帽相关器等[9,19-20]。
5)分别构造代表十六进制数0x0~0xF的数据块相关器,将去噪后的信号与各数据块相关器进行互相关处理,最大相关值所对应的十六进制数即为该数据块内波形所代表的码值。基于数据块相关器进行码值确定时的互相关函数满足:
{r_{xy}}\left( i \right) = \sum\limits_{t = - \infty }^{ + \infty } {x\left( t \right){y_i}\left( t \right)} (7) 6)根据各测量参数的位数,将各数据块对应的码值进行组合。最终根据各测量参数的量程,将组合后的十六进制数转换成井下真实的测量结果。
3. 传统方法与改进方法的对比分析
苏北地区某小井眼页岩油井现场采集的一段钻井液脉冲原始信号如图1所示。分析可知,由于受各种噪声的干扰,原始信号十分复杂,无法直接从中准确地分辨出编码脉冲,需要对钻井液脉冲原始信号进行去噪和识别处理,才能够得到真实的井下测量数据。分别采用传统和改进的信号处理方法对图1中的钻井液脉冲原始信号进行处理,以对比分析上述2种方法在去噪、同步头识别和码值判别等方面的应用效果。
3.1 去噪效果
去噪是钻井液脉冲信号处理的关键步骤之一,直接决定信号识别的准确性。分别利用带通滤波算法和优化VMD算法处理钻井液脉冲原始信号,结果如图2和图3所示。对于优化VMD算法,为了加快计算速度,设置K的取值范围为[2,10],α的取值范围为[100,5 000],K的更新步长为1,α的更新步长为100。
由图2可知,经过带通滤波处理后,钻井液脉冲原始信号中的噪声被明显压制,编码脉冲的形态得以展现出来。由图3可知,经过优化VMD算法处理后,钻井液脉冲原始信号中各种模态分离较为彻底。由于泵冲信号的频谱特征是在泵冲基频的整数倍处有明显的能量极大值,故可判断IMF6为泵冲基波,频率约为0.99 Hz;IMF4和IMF3分别为泵冲二次和三次谐波,频率分别约为1.98和2.97 Hz;IMF5、IMF2和IMF1为部分泵冲谐波和部分高频噪声的叠加;由于基线信号的频谱特征是能量主要集中在0.10 Hz以下的低频处且能量很强,故可判断IMF8为基线信号;由于随机噪声的频谱特征为全频率分布,故可判断残余分量为部分随机噪声和部分泵冲谐波的叠加;由于有用信号的能量主要集中在脉冲周期的倒数附近,故可判断IMF7为有用信号。
将带通滤波和优化VMD去噪后的信号进行对比,结果如图4所示。分析可知,尽管有用信号幅度仅为原始信号幅度的0.5%左右,但2种去噪方法均能有效地压制噪声,进而较为明显地从有用信号中分辨出编码脉冲。根据编码规则可以初步判断,15.3~26.3和162.3~173.2 s的3个连续脉冲可能为同步头信号,56.3~71.7,93.4~109和131.3~146.9 s的2个幅度较高的脉冲可能为数据信号,其他为杂波。对比35~53,73~91和112~128 s的杂波幅度可知,与带通滤波算法相比,优化VMD算法能够更好地压制杂波。
3.2 同步头识别效果
寻找同步头是信号识别的第一步。寻找同步头的传统方式是检测去噪后信号的峰值,判断相邻波峰之间的时间间隔是否符合同步头特征。然而,由于去噪算法并不能完全去除所有干扰,去噪后的波形中必然存在诸多伪峰[9-11]。对于该情况,通常通过设定阈值去伪,但在低信噪比条件下编码脉冲和杂波幅度相差不大,难以保证应用效果,如图5所示。对于带通滤波去噪后的信号,当阈值设定为0.036 MPa时,幅度小于0.036 MPa的波形均被置为0,只有部分杂波被消除,与编码脉冲幅度差异不大的伪峰未被消除(如52.10和82.85 s附近的杂波脉冲),仍会对后续处理造成干扰。当阈值设定为0.067 MPa时,幅度小于0.067 MPa的波形均被置为0,杂波均被消除,波形中不再存在伪峰,但19.9和167.5 s附近的同步头脉冲也被消除,无法再确定同步头。对于优化VMD分解去噪后的信号,当阈值设定为0.036 MPa时,即可完全消除杂波,并完整保留编码脉冲。
根据编码规则,同步头信号中3个脉冲峰值之间的时间间隔均为4 s。计算15.3~26.3 s范围内3个连续脉冲相邻波峰之间的时间间隔,结果如图6所示。对于带通滤波去噪后的信号,相邻波峰之间的时间间隔分别为3.35和4.63 s,与理论值差异较大,难以判定为同步头信号。对于优化VMD分解去噪后的信号,相邻波峰之间的时间间隔分别为4.03和3.96 s,与理论值差异很小,可以判定为同步头信号。即,优化VMD分解算法能够更好地保留编码脉冲的特征。
互相关是一种确定2个信号之间相似度的处理方法,不需要准确地获取每个有效峰的位置,其基本原理是对信号序列和相关器进行点积计算[9,19-20]。对于本文所分析的信号,构造的理论同步头相关器如图7所示。将理论同步头相关器与去噪后的信号进行互相关处理可得相关后的波形,如图8所示。分析可知,无论是带通滤波去噪后的信号还是优化VMD去噪后的信号,互相关处理后,同步头附近的相关波形幅度均明显强于其他位置。对于带通滤波去噪后的信号,第一帧数据相关波形最大值所对应的位置为25.45 s(即第一帧数据的起始位置),第二帧数据相关波形最大值所对应的位置为172.50 s(即第二帧数据的起始位置)。对于优化VMD去噪后的信号,第一帧数据的起始位置为25.50 s,第二帧数据的起始位置为172.50 s,与利用带通滤波去噪后信号获取的起始位置基本一致。这表明,与传统基于峰值检测的同步头识别算法相比,基于互相关的同步头识别算法具有更高的稳定性。
3.3 码值判别效果
起始位置确定后,即可根据数据块长度对去噪后的信号进行分块处理,每一个数据块内的波形代表着一个码值。传统的码值判别方式与传统的寻找同步头方式类似,即检测数据块内波形的峰值,计算波峰位置与数据块起始位置之间的时间间隔。这种方式同样也存在稳定性差的问题,在此不再赘述。基于图8中得到的同步头位置,对优化VMD去噪后的信号进行分块处理。对于第一帧数据,25.5~44.5 s为第一个数据块,44.5~63.5 s为第二个数据块,63.5~82.5 s为第三个数据块,82.5~101.5 s为第四个数据块,101.5~120.5 s为第五个数据块,120.5~139.5 s为第六个数据块,139.5~158.5 s为第七个数据块,如图9所示。
根据编码规则构造理论数据块相关器,其波形如图10所示。对于每个数据块,将理论数据块相关器与数据块内去噪后的信号分别进行互相关处理,即可得到16个相关值,如图11所示。
分析可知,将理论数据块相关器与数据块1进行相关处理后,0x2码值对应的相关值最大,即数据块1内波形所对应的码值为0x2。同理可以得出,数据块2~7内波形所对应的码值分别为0xA、0x3、0x9、0x3、0x9和0x3。根据编码规则可知,该数据帧为复合序列,由1个同步头、1个序列号和3个GAMMA测量值3部分组成(见表1)。序列号占据1个数据块,每个GAMMA测量值占据2个数据块。因此,序列号的码值为0x2,3个GAMMA测量值的码值依次为0x3A、0x39和0x39。
表 1 数据序列编码Table 1. Coding of data sequence序列号 参数名称 位数 量程/API 脉冲数 精度/API 1 GAMMA 8 0~500 2 ±0.977 2 GAMMA 8 0~500 2 ±0.977 3 GAMMA 8 0~500 2 ±0.977 根据表1所示数据序列编码规则,可以将组合后的十六进制数先转换成十进制数,再转换成井下真实的测量结果。即:
{V_{\rm{m}}} = \frac{{V_{{\rm{bin}}}} \left( {{V_{\max}} - {V_{\min }}} \right)} { {{2^D} - 1} } + {V_{\min }} (8) 式中:Vm为真实参数测量值,API;Vbin为十进制组合码值;Vmax为最大测量值,API;Vmin为最小测量值,API;D为测量值位数。
因此,该帧钻井液脉冲信号最终解码结果为:序列号为2,3个GAMMA测量值依次为113.726、111.765和111.765 API。
4. 结论与建议
1)为了满足复杂井眼环境下钻井液脉冲信号处理的要求,根据脉冲位置调制编码的基本原理,提出了一种基于优化变分模态分解(VMD)和互相关的钻井液脉冲信号处理方法。利用该方法,实现了低信噪比条件下有用信号的有效提取、数据帧起始位置的可靠计算以及码值的准确获取。
2)与传统的带通滤波去噪算法相比,优化VMD算法能够更好地压制杂波、保留编码脉冲的特征。与传统的阈值设定和峰值检测识别算法相比,互相关算法不需要准确地获取每个有效峰的位置,具有更高的稳定性。
3)目前,VMD算法具有较大的计算量,建议下一步对算法进行并行化处理,以提高解码效率。
-
[1] DZ/T 0254-2014页岩气资源储量计算与评价技术规范[S]. DZ/T 0254-2014 Regulation of shale gas resources/reserves estimation[S]. [2] 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术[J].天然气工业,2017,37(1):90-96. JIANG Tingxue,BIAN Xiaobing,WANG Haitao,et al.Volume fracturing of deep shale gas horizontal wells[J].Natural Gas Industry,2017,37(1):90-96. [3] 路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. LU Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8. [4] 曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. ZENG Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6. [5] 牛新明.涪陵页岩气田钻井技术难点及对策[J].石油钻探技术,2014,42(4):1-6. NIU Xinming.Drilling technology challenges and resolutions in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(4):1-6. [6] 艾军,张金成,臧艳彬,等.涪陵页岩气田钻井关键技术[J].石油钻探技术,2014,42(5):9-15. AI Jun,ZHANG Jincheng,ZANG Yanbin,et al.The key drilling technologies in Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2014,42(5):9-15. [7] 张金成,艾军,臧艳彬,等.涪陵页岩气田"井工厂"技术[J].石油钻探技术,2016,44(3):9-15. ZHANG Jincheng,AI Jun,ZANG Yanbin,et al.Multi-well pad technology in the Fuling Shale Gas Field[J].Petroleum Drilling Techniques,2016,44(3):9-15. [8] 路保平,丁士东.中国石化页岩气工程技术新进展与发展展望[J].石油钻探技术,2018,46(1):1-9. LU Baoping,DING Shidong.New progress and development prospect in shale gas engineering technologies of Sinopec[J].Petroleum Drilling Techniques,2018,46(1):1-9. [9] POPE C,PETERS B,BENTON T,et al.Haynesville shale:one operato’s approach to well completions in this evolving play[R].SPE 125079,2009.
[10] WOOD D D,SCHMIT B E,RIGGINS L,et al.Cana Woodford stimulation practices:a case history[R].SPE 143960,2011.
[11] 杨金华,田洪亮,郭晓霞,等.美国页岩气水平井钻井提速提效案例与启示[J].石油科技论坛,2013,32(6):44-48,67. YANG Jinhua,TIAN Hongliang,GUO Xiaoxia,et al.Improvement of drilling speed and efficiency of US shale gas horizontal well[J].Oil Forum,2013,32(6):44-48,67. [12] 许京国,陶瑞东,郑智冬,等.牙轮-PDC混合钻头在迪北103井的应用试验[J].天然气工业,2014,34(10):71-74. XU Jingguo,TAO Ruidong,ZHENG Zhidong,et al.Pilot tests of a roller-PDC hybrid bit in Well Dibei 103,Tarim Basin[J].Natural Gas Industry,2014,34(10):71-74. [13] 林永学,王显光,李荣府.页岩气水平井低油水比油基钻井液研制及应用[J].石油钻探技术,2016,44(2):28-33. LIN Yongxue,WANG Xianguang,LI Rongfu.Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J].Petroleum Drilling Techniques,2016,44(2):28-33. [14] 李胜,夏柏如,林永学,等.焦页54-3HF井低油水比油基钻井液技术[J].石油钻探技术,2017,45(1):51-56. LI Sheng,XIA Boru,LIN Yongxue,et al.Oil-based mud with low oil/water ratio for Well Jiaoye 54-3HF[J].Petroleum Drilling Techniques,2017,45(1):51-56. [15] 肖京男,刘建,桑来玉,等.充气泡沫水泥浆固井技术在焦页9井的应用[J].断块油气田,2016,23(6):835-837. XIAO Jingnan,LIU Jian,SANG Laiyu,et al.Application of foamed cement slurry to Jiaoye-9 Well[J].Fault-Block Oil Gas Field,2016,23(6):835-837. [16] 刘伟,陶谦,丁士东.页岩气水平井固井技术难点分析与对策[J].石油钻采工艺,2012,34(3):40-43. LIU Wei,TAO Qian,DING Shidong.Difficulties and countermeasures for cementing technology of salle gas horizontal well[J].Oil Drilling Production Technology,2012,34(3):40-43. -
期刊类型引用(10)
1. 易浩,郭挺,孙连忠. 顺北油气田二叠系火成岩钻井技术研究与应用. 钻探工程. 2024(01): 131-138 . 百度学术
2. 徐磊,侯彬彬,董丽娜,高宇行. 靖边区域钻井提速技术. 中国石油和化工标准与质量. 2024(04): 177-179 . 百度学术
3. 王延文,叶海超. 随钻测控技术现状及发展趋势. 石油钻探技术. 2024(01): 122-129 . 本站查看
4. 任海涛,王新东,张昕,杨迎新,苏涛,王柏辉,周广静. PDC钻头数字化选型技术及软件开发. 石油机械. 2024(05): 9-16 . 百度学术
5. 胡文革. 顺北油气田“深地工程”关键工程技术进展及发展方向. 石油钻探技术. 2024(02): 58-65 . 本站查看
6. 刘湘华,于洋,刘景涛. 顺北油气田特深井钻井关键技术现状与发展建议. 石油钻探技术. 2024(02): 72-77 . 本站查看
7. 刘永旺,李坤,管志川,毕琛超,霍韵如,于濮玮. 降低井底岩石抗钻能力的钻速提高方法研究及钻头设计. 石油钻探技术. 2024(03): 11-20 . 本站查看
8. 李一岚. 顺北超深超高温油气藏钻完井提速关键技术. 石油钻探技术. 2024(03): 21-27 . 本站查看
9. 苏前荣,刘伟,张立军,刘松,刘长江,高蓬,纪照生. 顺北奥陶系漏失层钻井液关键技术研究. 内蒙古石油化工. 2024(12): 86-90 . 百度学术
10. 李兵. 海拉尔地区钻井提速设计优化. 山东石油化工学院学报. 2023(03): 51-55 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 5205
- HTML全文浏览量: 116
- PDF下载量: 7777
- 被引次数: 11