渤海油田稠油水平井防砂筛管耐温能力的确定

于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海

于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海. 渤海油田稠油水平井防砂筛管耐温能力的确定[J]. 石油钻探技术, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
引用本文: 于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海. 渤海油田稠油水平井防砂筛管耐温能力的确定[J]. 石油钻探技术, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010
Citation: YU Fahao, JIANG Zhaoping, BAI Jianhua, LIU Yigang, MENG Xianghai. Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2018, 46(6): 65-70. DOI: 10.11911/syztjs.2018010

渤海油田稠油水平井防砂筛管耐温能力的确定

基金项目: 

国家科技重大专项"渤海油田高效采油工程及配套技术示范"(编号:2016ZX05058-003)资助。

详细信息
    作者简介:

    于法浩(1990-),男,内蒙古赤峰人,2012年毕业于东北石油大学石油工程专业,2015年获东北石油大学石油与天然气工程专业硕士学位,初级工程师,主要从事管柱力学和管柱设计方面的研究。

    蒋召平: E-mail:yufahao2009@163.com。

  • 中图分类号: TE358+.1

Determination of the Temperature Resistance Capacity of Sand Control Screen Liner in Horizontal Heavy Oil Wells in the Bohai Oilfield

  • 摘要: 渤海油田热采水平井防砂筛管选型时参考的耐温能力未考虑井况的影响,导致部分热采水平井选用的防砂筛管不能满足注热要求而发生破坏。为此,在分析稠油热采水平井防砂筛管注热时受力的基础上,综合考虑弯曲应力与热应力对防砂筛管破坏的影响,给出了稠油热采水平井防砂筛管耐温能力的数值模拟计算方法。利用该方法计算了渤海油田6口热采水平井防砂筛管的耐温能力,分析了单位狗腿严重度下星孔、金属网布和桥式复合3种防砂筛管的耐温能力降低幅度。研究发现:考虑弯曲应力计算出的耐温能力与现场实际较吻合;单位狗腿严重度下星孔、金属网布和桥式复合3种防砂筛管耐温能力降低6~16℃;单位狗腿严重度下防砂筛管耐温能力的降低幅度随防砂筛管径向尺寸增大而增大;防砂筛管基管钢级越高,耐温能力降低幅度越小,且钢级对耐温能力降低幅度的影响程度大于径向尺寸;TP110H和BG110H钢级的金属网布或桥式复合防砂筛管具有较高的耐温能力,能满足渤海油田热采水平井的注热要求。研究结果表明,稠油热采水平井选择防砂筛管时,应考虑弯曲应力对防砂筛管耐温能力的影响,否则会导致防砂失效,影响稠油热采开发效果。
    Abstract: The current reference temperature resistance capacity for sand control screen liner selection of thermal recovery wells in Bohai Oilfield did not take account the influence of well conditions.Consequently,there was a breakdown of selected sand control screen liner in some thermal recovery wells because they failed to meet the requirements of heat injection.To solve the problem,researchers developed a numerical simulation method for calculating screen liner temperature resistance ability in thermal horizontal wells by means of the mechanical analysis of sand control screen liner in heat injecting conditions.Further,they considered the impact of bending and thermal stress on screen liner failure.Using this method,the temperature resistance capacity of sand control screen liner in six thermal recovery horizontal wells in Bohai Oilfield was calculated.Next,the reduction range of temperature resistance capacity of three types of sand control screen liner,i.e.star mesh,metal mesh and bridge-type composite under unit dog leg severity was analyzed.The results showed that the temperature resistance calculated under the bending stress was in good agreement with the actual situation.In fact,the temperature resistance of three types of sand control screen liner under unit dog leg severity was reduced by 6-16℃.Further,the reduction range of temperature resistance of sand control screen liner under unit dog leg severity increased with sand control screen line size.The higher steel grade of sand control screen liner generated a more limited range of reduced temperature resistance,and the influence of the degree of steel grade was greater than that of screen liner size.The grade TP110H,BG110H metal mesh or bridge-type composite sand control screen liner had high temperature resistance and could meet the heat injection requirements of thermal recovery wells in Bohai Oilfield.Therefore,we could conclude that the effect of bending stress on the temperature resistance capacity of sand control screen liner should be taken into account for selecting sand control screen liner for thermal recovery of heavy oil in horizontal wells.Notably,failing to consider it might cause the failure of sand control,and further affect the development effect of heavy oil thermal recovery.
  • 川西气田海相雷口坡组气藏位于四川盆地川西坳陷龙门山构造带中段。2014年,PZ1井雷口坡组四段测试获得121×104 m3/d的高产工业气流后,又在YA1井、YS1井等井相继获得工业气流[1-3],证实了雷口坡组气藏具有良好的勘探开发前景。前期所钻探井均采用四开井身结构,能够有效封隔漏层、高压层等复杂地层,并保证了目的层专封专打[4]。但雷口坡组气藏储层条件复杂,要进一步增加优质储层钻遇长度、提高单井产量,需要整体采用大斜度定向井进行开发,这时四开井身结构就存在套管层次多、大尺寸井段较长、中完作业时间长和钻井成本高等问题,难以满足安全快速钻井的要求。

    针对四开井身结构存在的问题,为提高气藏开发效益,在分析工程地质特征、保证雷口坡组专层专打的基础上,根据地层三压力剖面和井壁稳定性研究结果优化了必封点位置,设计了超深大斜度井三开井身结构,研究形成了钻井配套技术,并在PZ4–2D井开展了先导试验,取得了显著效果,为后续川西气田海相气藏大斜度井钻井提供了技术支持。

    川西气田海相雷口坡组气藏,在前期勘探和评价阶段累计完钻13口井,均采用四开井身结构[5]。一开采用ϕ444.5 mm钻头钻至蓬莱镇组中部(井深约800 m),下入ϕ346.1 mm套管封隔第四系及蓬莱镇组中上部的不稳定、易漏、易坍塌地层,为二开可能钻遇的气层提供井口控制条件;二开采用ϕ320.7 mm钻头钻至须家河组三段上部(井深约3 800 m),下入ϕ282.6 mm+ϕ273.1 mm套管封须家河组五段易垮塌地层和须家河组四段裂缝气层;三开采用ϕ241.3 mm钻头钻至马鞍塘组一段(井深约5 900 m),下入ϕ193.7 mm尾管封隔马鞍塘组二段以浅高压地层;四开采用ϕ165.1 mm钻头钻至设计井深完钻,先下入ϕ139.7 mm尾管固井,再回接ϕ193.7 mm套管至井口。四开井身结构设计方案如图1所示。

    图  1  四开井身结构设计方案
    Figure  1.  The design scheme of four-stage casing program

    在前期勘探评价阶段,四开井身结构可以有效分隔不同压力体系和复杂地层,能够满足现场安全钻进要求,并实现地质目标。但随着勘探开发的不断深入,钻井提速和经济高效开发的要求越来越高,此时四开井身结构逐渐表现出局限和不足。分析认为,川西气田海相雷口坡组气藏四开井身结构主要存在以下问题:

    1)开次较多,各开次中完作业时间平均长达75 d,占钻井周期的26%以上。

    2)套管层次多,套管用量大,全井下入套管总质量约达780 t。

    3)二开采用大尺寸钻头(ϕ320.7 mm钻头),机械钻速较低。二开井段采用ϕ320.7 mm钻头钻进约3 000 m,与使用ϕ241.3 mm钻头相比,平均机械钻速低30%以上,岩屑等废弃物量增加60%以上。

    因此,为了提高开发该气藏的经济效益,有必要进一步优化井身结构,降低钻井成本。

    针对四开井身结构存在的开次多、大尺寸井段长和机械钻速低等问题,首先考虑减少开次,对必封点进行优化调整。为此,2017年在PZ113井和PZ115井开展了三开井身结构先导试验,将须家河组、小塘子组、马鞍塘组和雷口坡组置于同一裸眼段,实钻过程中在小塘子组钻遇高压裂缝性气层,钻井液密度最高达到2.25 kg/L,高密度钻井液条件下雷口坡组井漏、卡钻风险高,表明该方案难以兼顾高压和低压层位。因此,在保证雷口坡组专层专打的基础上,保留雷口坡组四段顶部的必封点,对目的层以上井段进行优化(见图2),具体思路是:1)优化合并必封点,减少开次,由四开改为三开,从而节省一个开次的中完作业时间;2)缩短大尺寸井眼长度[6-7],充分发挥ϕ241.3 mm钻头的提速优势,同时减少钻井液及废弃物用量;3)减少大尺寸套管下入长度和水泥浆用量。

    图  2  井身结构优化过程
    Figure  2.  Optimization process of casing program

    井身结构由四开优化为三开,主要会带来3个问题:1)原来的800 m长表层套管变为导管,能否满足下一开次的井控安全要求;2)技术套管下入位置由须家河组四段中部上移至须家河组五段下部,能否满足下一开次小塘子组高压气层的井控安全要求;3)裸眼段由2 100~2 300 m增长至3 300~4 000 m,能否保证长裸眼的井壁稳定性。

    分析川西气田海相雷口坡组气藏的工程地质特征,结合现有工程工艺情况,可知蓬莱镇组、遂宁组和沙溪庙组大多为微含气层,实际钻井液密度一般低于1.60 kg/L,基本能够压稳气层。因此,将导管长度设置为200 m左右,能够满足浅层气井控要求。一开表层套管下至须家河组五段下部,套管鞋处地层破裂压力由74.6 MPa降至61.7 MPa,但受上层ϕ273.1 mm套管抗内压强度(48.8 MPa)限制,两种井身结构条件下最大关井压力不变。二开井段钻遇须家河组、小塘子组、马鞍塘组和雷口坡组四段,通过封隔须家河组五段煤层和页岩,强化钻井液封堵和抑制性,能够保证井壁稳定。因此,三开井身结构基本可行。

    川西气田海相雷口坡组气藏以雷口坡组四段为主要目的层,埋深5 700~6 300 m,上储层段厚度为8~16 m,下储层段厚度为30~45 m。参考前期完钻的PZ1井和YA1井,对地层孔隙压力、破裂压力和坍塌压力进行预测[8],结果见表1

    表  1  钻遇地层压力预测结果
    Table  1.  Prediction results of the encountered formation pressure
    地层垂深/m压力系数预测值
    组或段孔隙压力系数破裂压力系数坍塌压力系数
    第四系 24
    侏罗系蓬莱镇组—遂宁组1 4071.00~1.202.30~3.50 0~1.00
    沙溪庙组2 0991.20~1.402.25~2.800.50~1.10
    千佛崖组—白田坝组2 2161.40~1.602.35~3.501.00~1.25
    三叠系须家河组五段3 0421.45~1.752.45~3.001.20~1.55
    须家河组四段—三段4 4991.45~1.752.45~3.001.20~1.55
    须家河组二段5 1121.35~1.602.25~3.001.20~1.42
    小塘子组—马鞍塘组二段5 6921.35~1.602.50~3.501.30~1.72
    马鞍塘组一段5 7391.25~1.352.30~3.501.25~1.57
    雷口坡组四段5 8891.10~1.202.20~2.701.10~1.45
    下载: 导出CSV 
    | 显示表格

    应用GMI地应力软件建立设计井的井壁稳定模型并进行了分析,结果表明,雷口坡组水平地应力方向比较一致,最大水平主应力方向为近东西向,方位角在74°~84°(平均为80°左右),坍塌压力系数在1.10~1.20;最小水平主应力方向为近南北向,平均方位角为170°左右,坍塌压力系数最高为1.45左右,沿最小水平主应力方向钻井的井眼失稳风险最大。

    根据雷口坡组气藏三压力剖面和井壁稳定性研究结果,认为陆相千佛崖组—小塘子组地层具备在同一裸眼段实施的可行性,据此将前期的3个必封点优化为2个必封点:设计必封点1位于须家河组五段中下部稳定地层,封隔须家河组五段页岩和主要的煤层;考虑马鞍塘组二段底部可能发生井眼失稳、马鞍塘组一段含页岩夹层等情况,设计必封点2位于进入雷口坡组四段顶部斜深5 m处,为专层开发雷口坡组四段储层提供有利的井筒条件。设计的必封点位置如图3所示。

    图  3  必封点设置示意
    Figure  3.  Schematic of the mandatory sealing points

    由内而外、自下而上逐层确定各开次钻头和套管的直径,尽量选择API标准尺寸。设计方案为:导管封隔上部易漏层及浅层水;表层套管封隔须家河组五段页岩和煤层,为二开井段钻井提供井控条件;二开进入雷口坡组四段顶部斜深3~5 m,技术套管封隔马鞍塘组及以浅地层,保障目的层专封专打;三开钻至设计井深完钻。设计的三开井身结构见表2

    表  2  设计的三开井身结构
    Table  2.  The designed three-stage casing program
    开钻次序钻头程序 套管程序备注
    钻头直径/mm完钻深度/m 套管外径/mm下入井段/m
    导管444.5 202 365.10~200 导管
    1333.42 502 273.10~2 500表层套管
    2241.35 848 193.72 300~5 846 油层套管,悬挂尾管固井
    0~2 300回接油层套管至井口固井
    3165.16 501 裸眼完井
    下载: 导出CSV 
    | 显示表格

    川西气田海相超深大斜度井应用三开井身结构时,钻进施工时存在以下技术难点:须家河组—小塘子组地层可钻性级值超过7级,部分石英含量高的井段可钻性级值大于9级[9-10],造斜点位于须家河组二段地层,需要在钻井液密度高于2.0 kg/L条件下斜穿须家河组—小塘子组地层1 200 m左右,定向钻井提速提效难度大;二开裸眼段长达3 300~4 000 m,纵向上压力体系复杂,须家河组二段低压易漏,小塘子组存在高压裂缝气层,须家河组页岩和煤层易垮塌;局部区域雷口坡组四段顶部地层破碎,易发生井壁失稳和掉块卡钻。针对这些问题,研究了钻井配套技术。

    针对须家河组二段—小塘子组研磨性强和雷口坡组地层裂缝发育的特点,提出分段–多增大斜度井井眼轨道设计思路,即将造斜段分解为多个增斜段,根据地层可钻性设计每小段的造斜率。造斜点设置在垂深5 000 m处,控制须家河组二段造斜率为13°/100m、小塘子组造斜率为2°/100m,尽量利用复合钻井自然增斜趋势钻穿小塘子组;马鞍塘组地层可钻性相对较好,设计为增斜段,造斜率约16°/100m。须家河组二段—小塘子组定向钻井优选六刀翼或七刀翼PDC钻头,该钻头采用ϕ13.0 mm 切削齿,配备辅助切削齿,具有保径能力强、抗研磨性强、可控制切削深度等特性[11]。基于使用寿命匹配原则,优选7头低速大扭矩等壁厚螺杆钻具,以提高钻头破岩扭矩,降低硬地层钻头转速,保障钻头平稳工作,避免切削齿过早磨损。

    由于雷口坡组四段地层破碎,为减少滑动钻井进尺,将造斜率控制在11°/100m左右,以保障大斜度井段钻井安全,同时利于调整目的层垂深。为确保裸眼中完井管柱的顺利下入,设计采用旋转导向定向钻井,优选六刀翼ϕ13.0 mm齿PDC钻头,配合耐温150 ℃ AutoTrak旋转导向工具,保证井眼轨迹平滑,确保准确中靶。

    针对二开长裸眼井段的井眼失稳问题,以“强化抑制、适度封堵、合理密度”为原则,构建了复合盐强抑制聚磺防塌钻井液体系[12]。该钻井液的技术核心包括抑制、封堵和润滑3个单元。抑制单元由无机钾盐、有机钾盐和聚胺组成,以降低滤液活度,延长井壁坍塌周期;封堵单元由成膜封堵剂、微米–纳米封堵剂和可变形封堵剂组成,以降低滤失量,减小压力传递及毛细管效应,封堵地层孔隙和微裂缝;润滑单元由抗温抗盐高效液体润滑剂、固体润滑剂组成,以降低钻井摩阻,解决大斜度井段托压问题。通过室内试验确定的钻井液配方为:上部井浆+8.0%氯化钾+3.0%甲酸钾+0.4%~0.6%生石灰+0.5%~1.0%聚胺+0.6%~0.8%聚阴离子纤维素+2.0%~4.0%磺化酚醛树脂+2.0%~4.0%无铬磺化褐煤+0.1%~0.3%两性离子聚合物包被剂+纳米封堵剂+成膜封堵剂+2.0%~3.0%超细碳酸钙+井壁封固剂+1.0%~2.0%聚合物抗温抗盐降滤失剂+4.0%~6.0%抗温抗饱和盐润滑剂+重晶石粉。钻井液密度1.78~1.99 kg/L,漏斗黏度56~70 s、润滑系数0.12,控制K+浓度>35 000 mg/L,实钻中定时定量加入处理剂,确保钻井液性能优良。

    针对三开钻进时雷口坡组四段地层破碎、掉块卡钻风险高的问题,优选复合型封堵剂、成膜封堵剂和纳米封堵剂,配制了强封堵高酸溶聚磺钻井液,以降低斜穿破碎地层时的卡钻风险,并应用屏蔽暂堵技术保护储层[13-14]。钻井液配方为:上部井浆+3%~5%磺化酚醛树脂+2%~4%无铬磺化褐煤+2%~3%抗温抗饱和盐润滑剂+3%~5%超细碳酸钙+成膜封堵剂+井壁封固剂+复合型封堵剂+聚合物抗温抗盐降滤失剂+减磨剂类润滑剂+石灰石。钻井液密度1.48~1.50 kg/L,漏斗黏度53~63 s、高温高压滤失量6~10 mL,润滑系数<0.11。

    PZ4-2D井为川西气田一口海相气藏超深大斜度井,设计采用三开井身结构,采用了分层–多增大斜度井井眼轨道设计方法,造斜点选择在须家河组二段(井深5 000 m),可钻性较好地层的造斜率为(8°~14°)/100m,难钻地层的造斜率控制在2°/100m左右。该井井眼轨道设计数据见表3

    表  3  PZ4-2D井井眼轨道设计结果
    Table  3.  Designed borehole trajectory of Well PZ4-2D
    开次井深/m井斜角/(°)方位角/(°)垂深/m北南位移/m东西位移/m水平位移/m全角变化率/((°)·(100 m)–1关键点
    1 00 0 0 00 0 0
    2 500.000 0 0 00 0 0
    25 000.000 0 5 000.00 00 0 0 造斜点
    5 113.2915.00138.305 112.00 −11.01 9.81 14.7513.24须家河组二段底界
    5 589.5825.00138.305 559.00−132.48118.04177.44 2.10小塘子组底界
    5 761.1152.00138.305 692.00−211.47188.42283.2315.74
    5 844.1459.00138.305 739.00−262.53233.91351.62 8.43雷口坡组四段顶界
    35 864.1459.00138.305 749.30−275.33245.31368.760
    6 013.0778.34139.265 803.22−379.24336.24506.8313.00
    6 026.9878.34139.265 806.03−389.56345.13520.450
    6 042.7479.91140.005 809.00−401.35355.15535.9211.00A靶点
    6 470.9979.91140.005 884.00−724.35626.15957.470 B靶点
    6 500.9979.91140.005 889.25−746.98645.13987.000
    下载: 导出CSV 
    | 显示表格

    PZ4-2D井实钻井身结构见表4。为有效分隔各复杂地层,确保钻达地质目标,实钻各开次的必封点与设计结果基本一致:一开设计钻至须家河组五段中下部,表层套管封隔页岩夹层和煤层,但实际钻进中在蓬莱镇组—沙溪庙组钻遇微含气层,未在须家河组五段钻遇气层,钻井液密度低于1.70 kg/L,具备将须家河组五段全部揭穿的有利地质条件,因此将一开加深至须四段顶部,表层套管封隔须家河组五段,并适当缩短了二开井段长度,降低了二开钻井难度;二开井段应用复合盐强抑制聚磺防塌钻井液,解决了长裸眼长周期井壁稳定问题;三开井段应用强封堵高酸溶聚磺钻井液,实钻过程中起下钻摩阻60~120 kN,返出岩屑大小均匀无掉块,解决了破碎地层井壁稳定和大斜度井段润滑防卡问题。

    表  4  PZ4-2D井实钻井身结构
    Table  4.  Casing program of Well PZ4-2D
    开钻次序钻头程序套管程序备注
    钻头直径/mm完钻深度/m套管外径/mm下入井段/m
    导管444.5 200.50365.10~198.50  表层套管,封地表水及疏松易漏地层
    1333.43 051.00273.10~3 049.00 技术套管,封须家河组五段
    2241.35 883.00193.72 839.46~5 881.00  油层套管,进入雷口坡组四段顶部斜深5 m,悬挂尾管固井
    0~2 839.46 回接油层套管至井口固井
    3165.1 裸眼完井
    下载: 导出CSV 
    | 显示表格

    该井实钻中,采用ϕ16.0 mm齿PDC钻头+ϕ185.0 mm1.5°单弯螺杆钻具造斜,进入小塘子组后,由于地层研磨性增强,优选耐磨性更强的六刀翼ϕ13.0 mm齿PDC钻头稳斜钻进;二开5 018~5 883 m井段,使用7只PDC钻头,其中复合钻井比例达到80%以上,平均机械钻速2.22 m/h,与前期直井段相比,钻速提高74.8%;三开5 886.00~6 573.77 m井段,使用2只PDC钻头,平均机械钻速4.61 m/h,应用抗温150 ℃旋转导向工具精确控制在储层段穿行,井斜角从58.0°增至79.9°,然后降至70.5°,实现准确中靶。

    PZ4-2D井在采用优化后的三开井身结构的基础上,又集成应用了高效PDC钻头+等壁厚螺杆钻具、复合盐强抑制聚磺防塌钻井液和旋转导向轨迹控制等多项技术,攻克了长裸眼复杂地层井壁失稳、破碎地层定向钻井等技术难题,完钻井深6 573.77 m、平均机械钻速3.53 m/h,钻井周期199.3 d。与前期直井相比,在井深增加239 m的情况下,机械钻速提高40.3%、钻井周期缩短22.7%,而且确保了钻井井控安全,全井零井下故障,首次实现了200 d内完钻一口川西气田海相气藏超深大斜度井的目标。

    1)在分析川西气田海相雷口坡组气藏工程地质特征的基础上,提出了保证目的层专封专打、减少开次的井身结构优化思路,确定了必封点的合理位置,优化形成了三开井身结构设计方案,满足了川西气田海相气藏经济高效开发的需求。

    2)为提高坚硬难钻地层的造斜效率,提出了分段–多增大斜度井井眼轨道设计方法,基于地层岩性特征和可钻性级值优化了造斜点和分段造斜率,优选了高抗磨定向钻头和配套动力钻具。

    3)复合盐强抑制聚磺防塌钻井液能够有效抑制页岩、泥岩地层的水化坍塌,具有良好的抗高温和润滑性能;强封堵高酸溶聚磺钻井液能够强化井筒,保证破碎地层斜井段安全钻井。

    4)PZ4-2D井的成功试验表明,三开井身结构设计基本科学、合理,钻井配套技术安全有效,在同类气藏和同类井钻井中具有推广应用价值。

  • [1] 王兆会,高德利.热采井套管损坏机理及控制技术研究进展[J].石油钻探技术,2003,31(5):46-48.

    WANG Zhaohui,GAO Deli.The casing damage mechanisms and its control in thermal recovery wells[J].Petroleum Drilling Techniques,2003,31(5):46-48.

    [2] 王廷瑞,王新卯.五口热采井套管损坏原因分析[J].石油钻探技术,1995,23(1):18-20.

    WANG Tingrui,WANG Xinmao.Cause analysis of casing damage in five thermal recovery wells[J].Petroleum Drilling Techniques,1995,23(1):18-20.

    [3] 赵益忠,孙磉礅,高爱花,等.稠油油藏蒸汽吞吐井长效防砂技术[J].石油钻探技术,2014,42(3):90-94.

    ZHAO Yizhong,SUN Sangdun,GAO Aihua,et al.Long-term sand control technology for multiple round steam huff and puff wells in heavy oil reservoirs[J].Petroleum Drilling Techniques,2014,42(3):90-94.

    [4] 罗蒙,王俐,李良庆.热采井用筛管热应力试验技术研究[J].宝钢技术,2013(3):39-44. LUO Meng,WANG Li,LI Liangqing,et al.Research on thermal stress experiment technique for sieve tubes used in thermal recovery wells[J].Bao-Steel Technology,2013

    (3):39-44.

    [5]

    SMITH K,BOWEN E.Testing results of an economical mesh screen for thermal application[R].SPE 170010,2014.

    [6] 隋晓东.热采水平井完井管柱受力分析及优化技术研究[D].东营:中国石油大学(华东),2011. SUI Xiaodong.Completion tubing stress analysis and optimization technology research of thermal horizontal wells[D].Dongying:China University of Petroleum(Huadong),2011.
    [7] 陈庭根,管志川.钻井工程理论与技术[M].东营:石油大学出版社,2000:166-172. CHEN Tinggen,GUAN Zhichuan.Theory and techniques of drilling engineering[M].Dongying:Petroleum University Press,2000:166

    -172.

    [8] 王德新,于润桥.套管柱在水平井弯曲井段的可下入性[J].石油钻探技术,1997,25(1):12-13

    ,40. WANG Dexin,YU Runqiao.Trip ability of casing string in the curved interval of horizontal well[J].Petroleum Drilling Techniques,1997,25(1):12-13,40.

    [9] 高德利,高宝奎.水平井段管柱屈曲与摩阻分析[J].石油大学学报(自然科学版),2000,24(2):1-3. GAO Deli,GAO Baokui.Effects of turular buckling on torque and drag in horizontal well[J].Journal of the University of Petroleum,China(Edition of Natural Science),2000,24(2):1-3.
    [10] 刘坤芳,张兆银,孙晓明,等.注蒸汽井套管热应力分析及管柱强度设计[J].石油钻探技术,1994,22(4):36-40.

    LIU Kunfang,ZHANG Zhaoyin,SUN Xiaoming,et al.Analyses of steam-injected well casing thermal stress and casing string strength design[J].Petroleum Drilling Techniques,1994,22(4):36-40.

    [11] 李静,林承焰,杨少春,等.套管-水泥环-地层耦合系统热应力理论解[J].中国石油大学学报(自然科学版),2009,33(2):63-69. LI Jing,LIN Chengyan,YANG Shaochun,et al.Theoretical solution of thermal stress for casing-cement-formation coupling system[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(2):63-69.
    [12] 吴建平.防砂筛管受热变形分析[J].石油钻采工艺,2010,32(1):45-49.

    WU Jianping.Analyzing on sand control screen thermal deformation[J].Oil Drilling & Production Technology,2010,32(1):45-49.

    [13] 刘正伟,解广娟,张春杰,等.海上稠油热采井防砂筛管热应力分析[J].石油机械,2012,40(2):26-29.

    LIU Zhengwei,XIE Guangjuan,ZHANG Chunjie,et al.A thermal stress analysis of the sand control screen in offshore heavy oil thermal production wells[J].China Petroleum Machinery,2012,40(2):26-29.

    [14] 任思齐,康志勤,吕义清.热采井套管热固耦合作用数值模拟分析[J].煤炭技术,2017,36(5):301-303.

    REN Siqi,KANG Zhiqin,LYU Yiqing.Numerical simulation of thermal-stress coupling in casing of thermal recovery wells[J].Coal Technology,2017,36(5):301-303.

    [15] 王兆会,马兆忠.热采井温度对套管性能的影响及预应力值计算方法[J].钢管,2007,36(4):24-27.

    WANG Zhaohui,MA Zhaozhong.Effect by thermal well temperature on casing properties and calculation method for pretension[J].Steel Pipe,2007,36(4):24-27.

    [16] 杨雪春.热处理对稠油热采井专用套管HS110H的组织和性能的影响[J].齐齐哈尔大学学报(自然科学版),2014,30(2):72-76. YANG Xuechun.The impact of heat treatment on thickened oil hot well special casing HS110H organization and property[J].Journal of Qiqihar University(Natural Science Edition),2014,30(2):72-76.
    [17] 宋吉水,张国亮,刘绍轩,等.射孔对套管抗挤强度影响[J].辽宁工程技术大学学报(自然科学版),2008,27(4):523-525. SONG Jishui,ZHANG Guoliang,LIU Shaoxuan,et al.Effect produced by perforation on counter-extrusion intensity of casing[J].Journal of Liaoning Technical University(Natural Science),2008,27(4):523-525.
  • 期刊类型引用(5)

    1. 李荷婷,代俊清,李真祥. 四川盆地及周缘超深/特深探井酸压改造的实践与认识. 石油钻探技术. 2024(02): 202-210 . 本站查看
    2. 李延生,王建新,张军,李明,张刚. 延长油田转向酸油层深部解堵室内评价. 当代化工. 2024(09): 2119-2123 . 百度学术
    3. 李隆新,王梦雨,胡勇,周源,周鸿,宁飞,冉林,王冠群,李炜,龙威. 缝洞型碳酸盐岩地下储气库高速注采渗流特征及库容动用机理. 天然气工业. 2023(10): 73-82 . 百度学术
    4. 徐诗雨,夏茂龙,祝怡,李天军,林怡. 开江—梁平海槽演化阶段与构造沉积特征. 断块油气田. 2023(06): 963-974 . 百度学术
    5. 冯新根,方俊伟,方裕燕,潘丽娟. 抗高温隔离膜缓速酸液体系研制与性能评价. 石油钻探技术. 2023(06): 99-105 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  7930
  • HTML全文浏览量:  140
  • PDF下载量:  42
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-09-23
  • 修回日期:  2018-07-29

目录

/

返回文章
返回