Development and Performance Evaluation of High Temperature Resistant Clean Fracturing Fluid System HT-160
-
摘要: 针对目前聚合物压裂液破胶后残渣含量大且已有清洁压裂液耐温性差、稠化剂用量大、成本高等不足,通过分子结构设计、室内合成、性能评价及控制条件优化,制备了一种性能优越的Gemini型阳离子黏弹性表面活性剂,并将其作为稠化剂,然后通过配方优化,配制了由5.0%的稠化剂和少量无机盐(氯化钾和溴化钾)组成的清洁压裂液HT-160。室内试验显示,该压裂液体系表现出明显的弹性特征,具有很好的支撑剂悬浮性能,在160℃、170 s-1测试条件下剪切2 h后,黏度仍然保持在40 mPa·s左右,而且与煤油接触后能够彻底破胶、无残渣。研究结果表明,该压裂液体系能够满足深部储层压裂作业的要求,耐温可达160℃。Abstract: Due to the fact that commonly used polymer fracturing fluids possess high residue content after gel breaking,also accompanied by by poor temperature resistance,a need for large volumes of thickener,and a high cost,a type of Gemini cationic viscoelastic surfactant with good performance has been developed.It was synthesized by taking into consideration molecular structure design,indoor synthesis,properties evaluation and optimization of the control conditions,which could convert it into a thickener.Finally,a new clean fracturing fluid HT-160 was developed by combining 5.0% of the thickener and a small amount of inorganic salts(potassium chloride and potassium bromide)by means of formula optimization.Indoor test results showed that the fracturing fluid system had obvious elastic characteristic and good suspension property,its viscosity could be kept at around 40 mPa·s after shearing for 2 hours under the conditions of 160℃ and 170 s-1.It could then be thoroughly broken without any residue after fully establishing contact with the kerosene.The study indicated that the fracturing fluid system could meet the requirement of deep reservoir fracturing operation,possessing a temperature resistance up to 160℃.
-
-
[1] SAMUEL M,CARD R J,NELSON E B,et al.Polymer-free fluid for hydraulic fracturing[R].SPE 38622,1997.
[2] MAO Jincheng,YANG Xiaojiang,WANG Dingli,et al.A novel Gemini viscoelastic surfactant (VES) for fracturing fluids with good temperature stability[J].RSC Advances,2016,6(91):88426-88432.
[3] SAMUEL M M,CARD R J,NELSON E B,et al.Polymer-free fluid for fracturing applications[J].SPE Drilling Completion,1999,14(4):240-246.
[4] 刘通义,陈江明,赵众从,等.BCG-1深井加重清洁压裂液体系[J].钻井液与完井液,2016,33(2):122-126. LIU Tongyi,CHEN Jiangming,ZHAO Zhongcong,et al.Weighted clean fracturing fluid for deep well stimulation[J].Drilling Fluid Completion Fluid,2016,33(2):122-126. [5] 王改红,廖乐军,郭艳萍.一种可回收清洁压裂液的研制和应用[J].钻井液与完井液,2016,33(6):101-105. WANG Gaihong,LIAO Lejun,GUO Yanping.The development and application of a recyclable clear fracturing fluid[J].Drilling Fluid Completion Fluid,2016,33(6):101-105. [6] 蒋其辉,蒋官澄,卢拥军,等.一种高温耐剪切超分子缔合弱凝胶清洁压裂液体系[J].钻井液与完井液,2016,33(6):106-110. JIANG Qihui,JIANG Guancheng,LU Yongjun,et al.A high temperature shear-resistant association supramolecular polymer weak gel fracturing fluid[J].Drilling Fluid Completion Fluid,2016,33(6):106-110. [7] 佚名.胜利油田采油院研制出VES压裂液[J].石油钻探技术,2005,33(5):55. Anon.VES fracturing fluid developed by Shengli Oilfield oil recovery research institute[J].Petroleum Drilling Techniques,2005,33(5):55. [8] 刘新全,易明新,赵金钰,等.粘弹性表面活性剂(VES)压裂液[J].油田化学,2001,18(3):273-278. LIU Xinquan,YI mingxin,ZHAO Jinyu,et al.Viscoelastic surfactant based fracturing fluids[J].Oilfield Chemistry,2001,18(3):273-278. [9] NASR-EL-DIN H A,GURLUK M R,CREWS J B.Enhancing the performance of viscoelastic surfactant fluids using nanoparticles[R].SPE 164900,2013.
[10] BYBEE K.Performance improvement of viscoelastic stimulation fluids with nanoparticles[J].Journal of Petroleum Technology,2009,61(6):49-50.
[11] CREWS J B,HUANG T.Performance enhancements of viscoelastic surfactant stimulation fluids with nanoparticles[R].SPE 113533,2008.
[12] van ZANTEN R.Stabilizing viscoelastic surfactants in high density brines[R].SPE 141447,2011.
[13] HEITMANN N,PITONI E,DEVIA F,et al.Polymer-free fluid technology optimizes seawater fracturing[R].OMC 2001-047,2001.
[14] ACHARYA A.Viscoelasticity of crosslinked fracturing fluids and proppant transport[J].SPE Production Engineering,1988,3(4):483-488.
[15] MALHOTRA S,SHARMA M M.A general correlation for proppant settling in VES fluids[R].SPE 139581,2011.
[16] DENNEY D.Hydraulic fracturing:internal breakers for viscoelastic-surfactant fracturing fluids[J].Journal of Petroleum Technology,2008,60(3):70-71.
[17] CREWS J B,HUANG T.Internal breakers for viscoelastic surfactant fracturing fluids[R].SPE 106216,2007.
-
期刊类型引用(13)
1. 许航,周福建,杨飒飒,李源,朱丽燕,姚二冬. 耐高温可加重酸性交联压裂液的研发与性能评价. 石油科学通报. 2024(03): 503-512 . 百度学术
2. 李建申,黄秋实,燕松兵,刘青,王茂功,董景锋,郑苗. 一种基于物理交联的多功能携砂驱油压裂液体系. 钻井液与完井液. 2024(05): 668-676 . 百度学术
3. 耿学礼,郑晓斌,苏延辉,敬倩,史斌,李建. 沁南区域煤层气水平井瓜尔胶钻井液技术. 石油钻探技术. 2023(01): 34-39 . 本站查看
4. 汤鲁馨,张晓琪,罗炎生,方波,翟文,卢拥军. 四元聚合物溶液及其压裂液流变性能. 油田化学. 2021(02): 235-239+246 . 百度学术
5. 张健,王金意,荆铁亚,李四海,张国祥. 压裂液与煤岩相互作用实验研究. 断块油气田. 2020(01): 131-136 . 百度学术
6. 张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系. 大庆石油地质与开发. 2020(01): 169-174 . 百度学术
7. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
8. 张扬,赵永刚,闫永强,王海兵,杨晓影,王强. 页岩储层新型清洁滑溜水压裂液体系. 钻采工艺. 2020(04): 89-92+11 . 百度学术
9. 潘一,夏晨,杨双春,马欣,MUAVMMAD Abubakar Rona,苏占全. 耐高温水基压裂液研究进展. 化工进展. 2019(04): 1913-1920 . 百度学术
10. 吕振虎,邬国栋,郑苗,杨建强,向英杰. 基于溶胀–熟化机理的疏水缔合聚合物速溶压裂液技术. 石油钻探技术. 2019(04): 104-109 . 本站查看
11. 吴琼,曹红燕,黄敏,段宝虹,许鑫科,张亮. 新型低伤害清洁减阻水压裂液体系研究及应用. 钻采工艺. 2019(06): 94-97+6-7 . 百度学术
12. 肖兵,范明福,王延平,郭粉娟,赵莹,党昊. 低摩阻超高温压裂液研究及应用. 断块油气田. 2018(04): 533-536 . 百度学术
13. 杨浩珑,向祖平,李龙,袁迎中. CO_2泡沫双子表面活性剂清洁压裂液研究与试验. 石油钻探技术. 2018(02): 92-97 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 7854
- HTML全文浏览量: 73
- PDF下载量: 11261
- 被引次数: 18