New Lifting Technology for CO2 Flooding Wells with High GOR in Caoshe Oilfield
-
摘要: 在草舍油田注CO2驱油过程中,由于CO2通过大通道窜至生产井,造成气油比上升,导致常规管式泵泵效低,为此进行了CO2驱高气油比井举升技术研究。研制了防气射流泵和强制拉杆防气泵等关键工具,组合了具有二级防气功能的CO2驱高气油比井举升管柱,并采取了防止CO2腐蚀的技术措施,形成了CO2驱高气油比井举升新技术。该技术在草舍油田3口井进行了现场试验,结果表明,3口试验井平均泵效提高了10.5百分点,平均单井日增油2.0 t。这表明,CO2驱高气油比井举升新技术能够解决草舍油田CO2驱高气油比井泵效低的问题,达到提到泵效和产油量的目的,为提高草舍油田CO2驱整体开发水平提供了一种新的技术手段。Abstract: In the process of CO2 flooding in the Caoshe Oilfield, the injected CO2 broke through to the producing wells through big channels, causing the GOR to rise and the pump efficiency to be reduced in a conventional tube pump. In consideration of such circumstances, the lifting technology for CO2 flooding wells with high GOR was studied. By developing the anti-gas jet pumps and the pumps with forced pulling rods, a new lifting technology for CO2 flooding wells with high GOR formed by combining lifting strings that have two-stage gas control functions, and taking the measures of anti-CO2 corrosion which are applicable to CO2 flooding wells. The technology was used in three wells in Caoshe Oilfield, North Jiangsu, and showed that the average pump efficiency was enhanced by 10.5 percent point, the and average daily oil production per well was increased by 2.0 tons. It indicates that the new lifting technology for CO2 flooding well with high GOR can solve the problem of low pump efficiency in CO2 flooding wells with high GOR in the Caoshe Oilfield, and reach the goal of increasing the pump efficiency and oil production, which provides a new technical approach for improving the overall oil recovery by means of CO2 flooding in the Caoshe Oilfield.
-
Keywords:
- CO2 flooding /
- GOR /
- jet pump /
- pump efficiency /
- field test /
- Caoshe Oilfield /
- Well CZ1-7B
-
大庆油田和胜利油田等油田的中高渗透油藏开发以直井、大配注量为主,主要采用桥式偏心分层注水技术。长庆油田采用丛式井开发,分层注水井为定向井,具有配注量低的特点,桥式偏心分层注水技术不能满足要求,存在测调成功率和测调精度低等难题[1-4]。2012年,长庆油田提出了桥式同心电缆高效测调技术,同心水嘴与配水器一体化集成设计,平台式对接测试,分层注水量测调的成功率和效率较高[5-10],成为该油田主体分层注水技术,并进行了推广应用。但该技术需分别配套验封仪及测调仪,配套费用较高,现场测试时需起下2趟工具,作业效率低。为了提高分层注水技术的适应性及作业效率,笔者等人研发了桥式同心验封测调一体化仪器,将验封仪与测调仪进行一体化集成,以期用一趟作业完成全井封隔器验封及分层注水量测调工序,形成了同心验封测调一体化分层注水技术,并应用430余井次,测调成功率达 98.0%,提高了施工效率,降低了作业成本,实现了提质增效。
1. 一体化分层注水技术
同心验封测调一体化分层注水工艺主要包括管柱坐封、开注、验封及测调作业[11-14],可以一趟作业完成全井各层段封隔器验封及配水器测调,实现分层注水井测试调配提质增效。
1)管柱坐封。同心验封测调一体化管柱主要包括封隔器、桥式同心一体化配水器及井下附件,与油管连接下入井内,通过地面加压坐封封隔器。
2)开注作业。采用电缆将桥式同心验封测调一体化仪器从油管内下入同心验封测调一体化管柱内,借助一体化仪器的磁定位功能确定下放位置。利用一体化仪器定位机构与桥式同心一体化配水器进行定位对接,调节爪带动同心活动筒旋转打开水嘴。
3)验封作业。地面发送指令,一体化仪器将离合机构调节至验封状态,电机正向旋转压缩验封胶筒,实现出水口上下两端封隔,地面控制产生激动压力,实时记录出水口压力及油管压力,地面测试人员远程判断验封结果,保存验封曲线,并控制电机旋转,使验封胶筒恢复原状。
4)测调作业。地面发送指令,一体化仪器将离合机构调节至测调状态,电机带动调节机构旋转产生轴向位移,调节水嘴开度。调节过程中,地面实时测试流量,实现分层注水量边测边调。
2. 关键工具及技术特点
同心验封测调一体化分层注水技术的关键工具是验封测调一体化仪器和桥式同心一体化配水器。验封测调一体化仪器是分层注水量测试调节和封隔器验封的关键工具;桥式同心一体化配水器是分层注水的核心工具,要满足不同层位注水需求。
2.1 验封测调一体化仪器
验封测调一体化仪器由同心电动测调仪和电动直读验封仪集成,既具备同心电动测调仪的流量计、扶正器、磁定位、电机、定位爪及调节爪,同时又具有电动直读验封仪的验封机构,可由一套仪器完成分层注水量测试调节及封隔器验封。
2.1.1 仪器结构
验封测调一体化仪器主要包括电机、联轴器、位移传感器、传动丝杠、开收臂凸轮、定位爪、传动轴、验封传动丝杠、验封离合机构、皮碗、测调离合机构和调节爪等部分,如图1所示。
2.1.2 主要功能
1)定位对接。采用磁定位方式确定验封测调一体化仪器的位置,当其下到配水器以下时,上提至桥式同心一体化配水器上端,电机通过联轴器、传动丝杠控制开收臂凸轮旋转,推动定位爪打开,下放一体化仪器,完成对接。
2)封隔器验封。位移传感器判断传动轴处于验封离合机构时,电机通过联轴器、传动丝杠及传动轴带动验封传动丝杠压缩皮碗,使皮碗在桥式同心一体化配水器出水口处上下坐封,通过地面压力激动测试封隔器的密封性;位移传感器判断传动轴不在验封离合机构时,电机先通过联轴器、传动丝杠拉动传动轴至验封离合机构,然后执行验封过程。
3)分层注水量测试调节。位移传感器判断传动轴位于测调离合机构时,电机通过联轴器、传动丝杠及传动轴带动调节爪旋转,调节桥式同心一体化配水器水嘴的开度,地面直读显示分层注水量,直至达到配注要求后停止调节;位移传感器判断传动轴不在测调离合机构时,则电机先通过联轴器、传动丝杠拉动传动轴至测调离合机构,然后进行分层注水量测试调节。
2.1.3 技术特点
1)采用离合结构设计,实现测调机构与验封机构的转换,用一套仪器完成封隔器验封及注水量测试调节,实现技术升级;
2)采用电缆作业方式,实现地面远程可视化操作,自动化程度高;
3)一体化仪器的集成度高,减少了配套的仪器设备,降低了作业成本和作业强度。
2.2 桥式同心一体化配水器
桥式同心一体化配水器主体设计为“平台对接、同心调节”结构。同时为了实现验封、测调一趟作业工序,对配水器主体结构、同心活动筒及出水口进行了优化设计,增加了扶正机构。
2.2.1 关键结构设计
桥式同心一体化配水器主体与定位防反转机构采取分体设计,用丝扣连接,同时主体结构下部增长,用于套装同心活动筒(见图2)。
桥式同心一体化配水器同心活动筒的位置由配水器上部改在配水器下部,与验封测调一体化仪器对接后,通过旋转产生轴向位移,实现配水器水嘴开度的调节,向下为增大配水器水嘴开度,向上为减小配水器水嘴开度。
出水口由配水器下部优化至配水器中间,从而满足验封测调一体化仪器在水嘴上下验证封隔器是否坐封,同时流量调节机构在下端与同心活动筒对接,实现一套仪器、一趟作业完成验封和测调2道工序。
2.2.2 技术特点
1)采用同心结构设计,实现平台式对接,同心调节,测调成功率高;
2)优化设计主体结构、出水口、同心活动筒,使之用一套仪器、一次对接,即可完成对应的封隔器验封、配水器配注量调节;
3)增加扶正机构,使测试仪器更容易通过,降低井下作业风险;
4)采用桥式通道结构设计(见图3),封隔器验封、分层测调过程中仪器占用中心通道,不影响其他层正常注水。
3. 室内性能测试
3.1 配水器密封、调节性能
同心验封测调一体化技术的核心为配水器密封性及调节扭矩,要求25 MPa压差下水嘴密封可靠,满足封隔器坐封,同时带压测调扭矩小于18.0 N·m。
采用一体化配水器性能检测装置测试配水器性能,该装置包括数显扭矩仪、支撑台、上密封接头、模拟调节仪及标准套管(见图4)。
测试一体化配水器密封性时,首先关闭一体化配水器水嘴,将下接头连接丝堵,上接头与上密封接头连接,建立配水器内部和配水器与标准套管环空2个密封腔;然后上密封接头连接试压泵向配水器内部加压,测试配水器正向密封压力,加压至25 MPa,观察压力变化情况,稳压5 min为合格;最后试压泵向配水器与标准套管环空加压,测试配水器反向密封压力,加压至25 MPa,观察压力变化情况,稳压5 min为合格。
调节扭矩测试分为常压测试和带压测试。常压测试时,正向、反向均不加压进行扭矩测试,连接好一体化配水器后,控制数显扭矩仪带动模拟调节仪旋转,模拟调节仪调节水嘴开度,从而调节水嘴流量,测试调节扭矩不超过5.0 N·m为合格。
带压测试与常压测试过程相同,但需采用试压泵将配水器内压力升至20 MPa,配水器与标准套管环空压力升至18 MPa,模拟正常注水时的水嘴开度,带压测试扭矩以不超过18.0 N·m为合格。
室内测试了10套一体化配水器,常压测试扭矩3.2~4.6 N·m,带压测试扭矩8.5~12.6 N·m,均满足设计要求。
3.2 验封性能验证
将验封测调一体化仪器放入验封加压工装中,依次连接好验封测调一体化仪器、控制器;将验封测调一体化仪器坐封到位,记录不同情况下的坐封电流;观察不同压力下密封皮碗的密封性能;验封完成后,进行不同压力下的带压解封,记录验封测调一体化仪器的解封电流。
室内测试结果表明,压差分别为0,10,20,30,40,50和60 MPa时,随着测试压力增大,开收臂、坐封、解封电流不断增大,仪器设计电流为350 mA,开收臂电流最大为125 mA,坐封电流最大为200 mA,解封电流最大为275 mA,满足设计要求。
4. 现场应用
截至2019年底,同心验封测调一体化分层注水技术在长庆油田南梁、环江、华庆等区块应用430余井次,配套测试1 500余井次,最大井深2 845.00 m,最大井斜角42.5°,试验成功率95.0%,测试扭矩8.0~15.0 N·m,平均单井验封、测试时间由6~8 h缩短至4 h以内,测调成功率达98.0%,单层测调误差小于 10.0%,人工作业成本降低20.0%,年节约测试费用412万元,平均单井年作业费用降低0.96万元。现场应用表明,同心验封测调一体化分层注水技术在保持较高测调成功率的基础上,进一步提高了施工效率、降低了现场作业成本,实现了提质增效。
2019年,4口典型井应用同心验封测调一体化分层注水技术进行测试,最大井深2 395.00 m,最大井斜角39.1º,最多4层,单层配注量6~20 m3/d,平均测试时间3.6 h,扭矩8~15 N·m,测试结果显示封隔器坐封可靠,测调达到配注要求。其中,S56-011井测试深度1 728.00 m,井斜角20.12°,全井配注量36.0 m3/d(其中,上层和下层配注量分别为20.0 和16.0 m3/d),测调结果如图5所示。该井上层注水量20.18 m3/d,下层实注量16.24 m3/d,现场验封测调用时4.0 h,地面控制仪器显示电流100~130 mA,扭矩8~11 N·m。
5. 结 论
1)长庆油田注水井为定向井,具有配注量低的特点,采用同心对接、调节和电缆高效作业模式,一趟作业可完成全井验封测调工序,降本增效效果显著,推动了分层注水技术更新升级。
2)验封测调一体化仪器采用离合机构,解决了测试仪器测调机构、验封机构的集成与自动转换的难题,实现了一套仪器完成封隔器验封及分层注水量测试调节功能。
3)室内测试及现场应用表明,同心验封测调一体化技术在较低扭矩下就能完成封隔器验封及分层注水量调节,测试时间由6~8 h缩短至4 h以内。
-
[1] 杨小辉,刘毅,于国龙,等.塔河油田防气技术分析[J].石油机械,2014,42(7):92-95. YANG Xiaohui,LIU Yi,YU Guolong,et al. Technical analysis of gas-prevention in Tahe Oilfield[J]. China Petroleum Machinery,2014,42(7):92-95. [2] 户贵华,童广岩,徐正国,等.磁力强制开启防气泵的研制[J].石油机械,2003,31(3):44-45. HU Guihua,TONG Guangyan,XU Zhengguo,et al. Development of anti-gas subsurface pump started compulsively with magnetic force[J]. China Petroleum Machinery,2003,31(3):44-45. [3] 马冬梅,张德平,辛涛云,等.一种新型防气举升工艺在CO2驱油井中的应用[J].石油天然气学报,2012,34(5):252-253. MA Dongmei,ZHANG Deping,XIN Taoyun,et al. Application of a new anti gas lift technology in oil well with CO2 flooding[J]. Journal of Oil and Gas Technology,2012,34(5):252-253. [4] 李顺平,李华斌,吕瑞典,等.防气抽油泵防气原理研究[J].石油矿场机械,2008,37(5):100-103. LI Shunping,LI Huabin,LYU Ruidian,et al. Study of anti-gas-pump principle[J]. Oil Field Equipment,2008,37(5): 100-103. [5] 朱达江,林元华,邹大鹏,等.CO2驱注气井封隔器橡胶材料腐蚀力学性能研究[J].石油钻探技术,2014,42(5):126-130. ZHU Dajiang,LIN Yuanhua,ZOU Dapeng,et al. Experimental study on the impact of corrosion on the rubber in packers in a CO2 injection well[J]. Petroleum Drilling Techniques,2014,42(5):126-130. [6] 吝拥军,徐涛,杨顺贵,等.抽油泵泵筒开孔制成中排气防气泵和长柱塞泵[J].石油机械,2003,31(9):66-67. LIN Yongjun,XU Tao,YANG Shungui,et al. The oil pump with hole in pump barrel and emission gas in the middle and long plunger[J]. China Petroleum Machinery,2003,31(9): 66-67. [7] 周继德,卢祥国.防气泵与气锚概述[J].石油机械,1993,21(4):43-46. ZHOU Jide,LU Xiangguo. The overview of prevention gas pump and gas anchor[J]. China Petroleum Machinery,1993,21(4):43-46. [8] 张光明.有杆泵抽油井气锚动态分析[J].石油钻采工艺,1999,21(4):95-97. ZHANG Guangming. Gas anchor performance analysis for sucker rod pumping well[J]. Oil Drilling Production Technology,1999,21(4):95-97. [9] 辜志宏,彭慧琴,耿会英.气体对抽油泵泵效的影响及对策[J].石油机械,2006,34(2):64-68. GU Zhihong,PENG Huiqin,GENG Huiying. The effection and countermeasure of pump efficiency gas[J]. China Petroleum Machinery,2006,34(2):64-68. [10] 刘东奇,佘梅卿,彭建文.防气杆式抽油泵的研制与应用[J].石油天然气学报,2007,29(2):135-137. LIU Dongqi,SHE Meiqing,PENG Jianwen. Development and application of a gas preventive sucker rod pump[J]. Journal of Oil and Gas Technology,2007,29(2):135-137. [11] 窦亮彬,李根生,沈忠厚,等.注CO2井筒温度压力预测模型及影响因素研究[J].石油钻探技术,2013,41(1):76-81. DOU Liangbin,LI Gensheng,SHEN Zhonghou,et al. Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J]. Petroleum Drilling Techniques,2013,41(1):76-81. [12] 薛令东,廖文山,宋全,等.国外新型有杆抽油泵及其特点[J].石油矿场机械,2006,35(6):81-83. XUE Lingdong,LIAO Wenshan,SONG Quan,et al. The property of rod pumping pump in foreign country[J]. Oil Field Equipment,2006,35(6):81-83. [13] NACE RP0775—2005 Preparation,installation,analysis and interpretation of corrosion coapons in oilfield operations[S].
-
期刊类型引用(4)
1. 陆金波,贺宗鉴,朱鑫磊,黄昆. 基于晶闸管的放电冲击波油气增产装置研制. 科学技术与工程. 2024(05): 1885-1892 . 百度学术
2. 滕柏路,郭为,曾晶莹,彭越,张晓伟,罗万静,万玉金. 页岩气井生产剖面分析及预测模型. 断块油气田. 2023(04): 586-592 . 百度学术
3. 黄亮,冯鑫霓,杨琴,吴建发,杨学锋,黄山. 深层页岩干酪根纳米孔隙中甲烷微观赋存特征. 石油钻探技术. 2023(05): 112-120 . 本站查看
4. 康忠健,刘鹏,刘智飞,刘雨晨,张晨光. 基于COMSOL的井下电磁式能量阻隔器设计及分析. 实验技术与管理. 2023(12): 30-36+51 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 9680
- HTML全文浏览量: 215
- PDF下载量: 10863
- 被引次数: 5