邻井随钻电磁测距防碰计算方法研究

李翠, 高德利, 刘庆龙, 孔雪

李翠, 高德利, 刘庆龙, 孔雪. 邻井随钻电磁测距防碰计算方法研究[J]. 石油钻探技术, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009
引用本文: 李翠, 高德利, 刘庆龙, 孔雪. 邻井随钻电磁测距防碰计算方法研究[J]. 石油钻探技术, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009
LI Cui, GAO Deli, LIU Qinglong, KONG Xue. A Method of Calculating of Avoiding Collisions with Adjacent Wells Using Electromagnetic Ranging Surveying while Drilling Tools[J]. Petroleum Drilling Techniques, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009
Citation: LI Cui, GAO Deli, LIU Qinglong, KONG Xue. A Method of Calculating of Avoiding Collisions with Adjacent Wells Using Electromagnetic Ranging Surveying while Drilling Tools[J]. Petroleum Drilling Techniques, 2016, 44(5): 52-59. DOI: 10.11911/syztjs.201605009

邻井随钻电磁测距防碰计算方法研究

基金项目: 

国家科技重大专项“低渗透油气藏高效开发钻完井技术”(编号:2016ZX05021-001)、山东省自然科学基金中青年科学家科研奖励“复杂条件下救援井电磁探测与定位技术理论研究”(编号:BS2015NJ008)资助。

详细信息
    作者简介:

    李翠(1984-),女,山东泰安人,2007年毕业于曲阜师范大学物理学专业,2014年获中国石油大学(北京)油气井工程专业博士学位,工程师,主要从事井下工具及仪器的研发工作。

  • 中图分类号: TE243+.9

A Method of Calculating of Avoiding Collisions with Adjacent Wells Using Electromagnetic Ranging Surveying while Drilling Tools

  • 摘要: 为了解决丛式井邻井井眼防碰问题,对邻井随钻电磁测距防碰计算方法进行了初步研究。在了解邻井随钻电磁测距防碰工具结构与工作原理的基础上,将磁源看作磁偶极子,利用磁偶极子法分析了磁源周围磁场的分布规律,建立了邻井套管磁化磁场计算模型和探管处磁感应强度计算模型,确立了丛式井邻井随钻电磁测距防碰计算方法,并利用数值模拟方法分析了探管内磁源间距、磁源磁矩和套管相对磁导率等参数对探管处磁感应强度的影响。探管处磁感应强度与磁源间距、磁源磁矩、套管相对磁导率和直径等参数呈正相关,合理设计工具的关键参数,可以增强探管处的磁感应强度,提高工具测量的准确性。研究结果表明,邻井随钻电磁测距防碰工具应用确立的邻井随钻电磁测距防碰计算方法,实时测量计算正钻井与邻井的间距和方位,基本可以满足丛式井导向钻井工程需求,这对丛式井邻井随钻电磁防碰技术的发展具有非常重要的现实意义。
    Abstract: To eliminate the possibility of colliding with other wells in cluster wells, preliminary research has been performed to determine a ranging calculation method to avoid collision with adjacent wells using ranging electromagnetic surveying while drilling tools. Based on structure and fundamental principles of such electromagnetic tools, the magnetic source was regarded as a magnetic dipole to determine the distribution of magnetic fields around the magnetic source in accordance with the magnetic dipole theory. In this way, models for calculation of magnetic fields around the adjacent casing and intensity of magnetic induction around probe. In addition, the ranging calculation method of anti-collision while drilling by using electromagnetic anti-collision tools was established. Numerical simulation and other methods were adopted to determine the impact of parameters such as the magnetic source spacing inside the probe, the magnetic moment of magnetic source, the relative permeability of the casing, the diameter of casing, and the included angle between the drilling well and the adjacent well. It also included the magnetic induction intensity around the probe (positively correlated to spacing between sources), magnetic moments, relatively magnetic conductivity and diameter of casing, and other parameters. The proper design of key parameters of such tools could effectively enhance the intensity of magnetic induction around the probe and promote the accuracy of such tools. Research results showed that the newly developed ranging methods for avoiding colliding with adjacent wells while drilling by using electromagnetic tools could be used to determine the spacing and azimuth between the well being drilled and adjacent well in real time. These tools could basically satisfy demands for the drilling of cluster wells and may have great significance in the development of such anti-collision surveying tools.
  • 国内煤层气储层(即煤层)分为低煤阶和高煤阶2类。高煤阶煤层具有“三低”(低压、低渗透、低饱和度)特点,煤层不稳定。高阶煤层气主要采用多分支水平井开发[1-5],但由于煤层机械强度低,排采过程中主井眼及分支井眼周围的煤层随着储层压力降低,易发生破碎、坍塌,导致部分多分支水平井产气效果差,有的产气量一直很低,有的前期产气量高,但后期递减严重且无法恢复。目前,采用将多分支水平井主井眼设置在顶板泥岩中或在主井眼下入钢制筛管(套管)的措施,实现了主井眼采气通道长期有效;但由于分支井眼间存在夹壁墙,重入困难,分支井眼还不能下入筛管,实现筛管完井,目前聚乙烯(PE)筛管完井方式只应用于煤层气U形井[6-8]。为使多分支水平井分支井眼长期有效,延长单井生产寿命,笔者研制了筛管完井重入引导工具,并在沁水盆地沁试12平1井进行了现场试验,实现了主井眼和分支井眼的重入。

    1)主井眼、分支井眼重入困难。煤层气多分支水平井钻井过程中分支井眼在主井眼上侧钻,完钻后存在多个夹壁墙(见图1),夹壁墙容易垮塌,造成主井眼、分支井眼重入困难。

    图  1  多分支水平井井身结构示意
    Figure  1.  The casing program of multi-lateral horizontal wells

    2)主井眼、分支井眼采用相同尺寸钻头钻进完成后,后续主井眼、分支井眼重入困难;相邻分支井眼侧钻点较近,易形成大肚子井眼,造成主井眼、分支井眼重入困难;近端分支井眼完成后,钻进主井眼和分支井眼产生的岩屑和固壁剂会堵塞已完成的分支井眼,造成分支井眼重入困难。

    3)主井眼和分支井眼的完井管柱下入困难。目前,煤层气U形井的PE筛管完井工艺为:首先将光钻杆下至井底,将PE筛管从钻杆水眼下到煤层水平段;然后起出钻杆,将PE筛管留于井内,支撑煤层井壁。多分支水平井必须利用专用工具引导PE筛管重入主井眼和分支井眼,而钻具水眼通道被定向仪器占用,PE筛管无法从钻具水眼内下入。

    在传统下筛管作业的基础上,研制了钻具重入引导工具。用空心导引鞋替代钻具组合中的钻头,用弯接头替代螺杆钻具,用空心引导工具替代MWD,形成了筛管完井重入引导工具,如图2所示。

    图  2  筛管重入完井引导工具结构示意
    Figure  2.  Structural diagram of screen re-entry completion guide tools

    筛管重入完井引导工具的工作原理为:空心导引鞋、弯接头和空心引导工具的尺寸分别与钻进钻具组合中的钻头、螺杆、MWD相同,利用空心引导工具测量井斜角、方位角和井深,并与实钻时的井深、井斜角和方位角进行比对,判断空心导引鞋位置,引导钻具重入分支井眼,通过对比空心引导工具测量的井眼轨迹数据和实钻井眼轨迹数据确定重入成功后,下入筛管。该工具的特点是:

    1)能准确引导钻具重入。该工具能准确测得钻具顶部的方位角、井斜角,将其与钻进时的方位角和井斜角进行对比,可判断钻具是否重入成功。

    2)由于筛管要从钻具水眼中进入煤层,而传统的MWD占据了水眼,筛管无法通过。因此,引导工具采用空心结构,MWD的传感器安装在引导工具内壁上,使其水眼直径大于55 mm,便于ϕ50.8 mm筛管通过。

    3)该工具没有钻井液和电缆通道,采用电磁波传输测量信号。

    4)为能与钻进时的井斜角和方位角进行对比,空心引导工具下方接弯接头和导引鞋的长度与螺杆钻具和钻头的长度相同,下部钻具组合与钻进时相同;为便于筛管通过弯接头和导引鞋,弯接头和导引鞋均采用了空心结构(分别如图3图4所示)。

    图  3  导引鞋
    Figure  3.  Guide shoes
    图  4  弯接头
    Figure  4.  Elbow connection

    空心导引鞋、弯接头和空心引导工具与实钻时的钻头、螺杆、MWD尺寸相同,将引导工具测得的井深、井斜角和方位角与实钻时的井深、井斜角、方位角进行比对,判断空心导引鞋的位置,引导钻具重入分支井眼,对比引导工具测量的井眼轨迹数据和钻进井眼轨迹数据,确定重入成功后,下入PE筛管。

    1)渐进式PE筛管完井。钻完一个分支井眼,下入PE筛管完井,钻井与完井交替进行。该方式存在以下问题:因先完成最近端的分支井眼,钻进后面主井眼及分支井眼时岩屑会堵塞近端的分支井眼,无法解决分支井眼的堵塞问题;需多次起下钻,交替完成钻进与下筛管作业;多次起下钻进行钻具重入及摸索钻具的下入位置,影响整体时效。

    2)整体筛管完井。先钻完主井眼,从主井眼远端钻分支井眼,每钻完一个分支井眼及其上的脉支井眼起钻并更换钻具组合,重入分支井眼进行筛管完井。其优点是分支井眼重入容易;缺点是需多次起下钻,影响整体时效。

    3)集体重入完井。钻完所有分支井眼、脉支井眼后,起钻更换钻具组合,分别重入各个分支井眼,进行筛管完井。其优点是钻井完成后,只需一次起下钻,节约时效。其缺点是分支井眼间存在夹壁墙,重入困难。

    根据现场实际地质情况和生产需求,为了提高生产时效,避免主井眼因受钻井液长期浸泡造成垮塌,选择集体重入完井方式。集体重入完井步骤(见图5)为:

    1)将引导钻具组合下入到主井眼,重入引导工具测量井深、井斜角和方位角,并与井眼轨迹数据进行比对,判断趾端L1分支井眼与主井眼的交点(A点),准备进行重入(见图5(a))。

    图  5  集体重入筛管完井示意
    Figure  5.  Schematic of a collective re-entry screen completion

    2)将引导钻具组合往前推送,实时测量井斜角和方位角,并与井眼轨迹数据进行比对,确定重入成功后下至B点(见图5(b))。

    3)从引导钻具组合的水眼中下入ϕ50.8 mm PE筛管(见图5(c))。

    4)锚定ϕ50.8 mm PE筛管,上提引导钻具组合,按上述步骤进行L2分支井眼筛管下入工作(见图5(d)),依次完成所有分支井眼下入筛管施工。

    沁试12平1井是山西沁水盆地部署的一口仿树形多分支水平井,钻探目的层为山西组3#煤层,主要钻探目的是探索多分支水平井在该区煤层气开发中的适应性,同时利用多分支水平井提高该区的单井产气能力。该井设计完成主井眼、15个分支井眼和40个脉支井眼,设计总进尺13 304.38 m(见图6)。该井在M主井眼和L3分支井眼应用分支井重入引导工具进行了井眼重入现场试验,并在L3分支井眼进行了重入筛管完井试验(见图6)。

    图  6  沁试12平1井井身结构示意
    Figure  6.  Casing program for the Well Qinshi 12-1

    该井钻至井深1 273.00 m时与沁试12平1-V1井连通,钻至井深1 902.50 m时与沁试12平1-V2井连通,钻至井深2 182.00 m完钻,主井眼水平段总进尺991.00 m,煤层进尺216.00 m。

    重入引导工具出套管后,将重入引导工具测得的井眼轨迹数据与钻进时MWD测得的井眼轨迹数据进行比对,结果见图7。重入引导钻具组合为:空心导引鞋+ϕ121.0 mm弯接头+转换短节+ϕ135.0 mm空心引导工具+转换短节+ϕ88.9 mm无磁钻杆+ ϕ88.9 mm钻杆。

    图  7  M主井眼重入引导工具测量井眼轨迹与MWD测量井眼轨迹的对比
    Figure  7.  Comparison on the re-entry tool measurement borehole trajectory and MWD borehole trajectory of M main hole

    图7可以看出,重入引导工具测得的井眼轨迹数据与钻进时MWD测得的井眼轨迹数据基本相同,证明钻具重入主井眼成功。

    L3分支井眼总进尺262.00 m,1 935.00~2 182.00 m井段处于煤层中。

    重入引导钻具组合下至井深1 920.00 m处,重入L3分支井眼,每隔5.00~10.00 m测量一组井斜角和方位角,与钻进时MWD测得的井眼轨迹数据进行对比,以判断重入工具的位置。表1为该分支井眼处于煤层井段重入引导工具测得的井眼轨迹数据与MWD测得井眼轨迹数据的对比结果。

    表  1  L3分支井眼重入井眼轨迹数据与钻进井眼轨迹数据的对比
    Table  1.  Comparison on the re-entry borehole trajectory data and drilled borehole trajectory data of L3 branch borehole
    井深/m井斜角/(°) 方位角/(°)
    MWD重入引导工具 MWD重入引导工具
    1 920.0094.4294.4 337.97337.9
    1 937.0090.5790.2 11.30 11.0
    2 092.00 93.9193.4 35.30 35.8
    2 171.0090.9390.4 356.30356.2
    下载: 导出CSV 
    | 显示表格

    表1可以看出,重入引导工具测得的井眼轨迹数据与MWD测得的井眼轨迹数据重合,表明重入成功。

    下钻至井深2 179.00 m循环完毕后,助推器连接到井口的钻杆上。将带矛头的PE筛管送入助推器内,用助推器将PE筛管送入钻杆内之后,接上顶驱,先上下活动钻具组合,正常之后,再将钻具组合放回原处,以5.0 L/s排量顶通钻具水眼,2 min后将排量调至正常钻进状态时的排量(15.0 L/s),此时泵压为6.0 MPa,泵送筛管15 min后,泵压升至8.5 MPa,说明此时PE筛管矛头刚出钻杆,进入地层;起钻至井深1 919.00 m(预计PE筛管下入到1 931.00~2 180.00 m井段)时,相当于钻具组合下部距离PE筛管顶部约12.00 m,开泵后循环泵压为5.8 MPa。说明PE筛管已经完全出钻杆,进入L3分支井眼。

    1)研制了多分支水平井筛管完井重入引导工具,优选了多分支水平井筛管完井方式,给出了重入筛管完井施工步骤。

    2)现场试验表明,重入引导工具能引导钻具重入主井眼和分支井眼,保证分支井眼顺利实施筛管完井,为煤层气后期排采提供稳定的通道。

    3)多分支水平井重入筛管完井技术目前仅在1口多分支水平井进行了现场试验,需进一步增加现场试验,以不断优化完善该技术,提高煤层气分支水平井的完井效果。

  • [1] 高德利.复杂结构井优化设计与钻完井控制技术[M].东营:中国石油大学出版社,2011:40-67. GAO Deli.Optimized design and control techniques for drilling completion of complex-structure wells[M].Dongying:China University of Petroleum Press,2011:40-67.
    [2] 魏刚,张春琳,邵明仁.小井距密集丛式定向井防碰技术[J].内蒙古石油化工,2010,36(2):99-101. WEI Gang,ZHANG Chunlin,SHAO Mingren.Anti-collision technology of short-distance directional cluster well[J].Inner Mongolia Petrochemical Industry,2010,36(2):99-101.
    [3]

    POEDJONO B,CONRAN G,AKINNIRANYE G,et al.Minimizing the risk of well collisions in land and offshore drilling[R].SPE 108279,2007.

    [4] 张凤久,罗宪波,刘英宪,等.海上油田丛式井网整体加密调整技术研究[J].中国工程科学,2011,13(5):34-40. ZHANG Fengjiu,LUO Xianbo,LIU Yingxian,et al.Research on overall encryption adjustment technology of offshore oil field[J].Engineering Science,2011,13(5):34-40.
    [5]

    POEDJONO B,PHILLIPS J W,LOMBARDO G.Anti-collision risk management stanard for well placement[R].SPE 121040,2009.

    [6]

    POEDJONO B,ISEVCAN E,LOMBARDO G J,et al.Anti-collision and risk management offshore Qatar:a successful collaboration[R].IPTC 13142,2009.

    [7] 刁斌斌.邻井距离随钻电磁探测与扫描监测计算方法研究[D].北京:中国石油大学(北京),2012. DIAO Binbin.Research on calculation methods for scanning monitoring electromagnetic detection of adjacent well distance while drilling[D].Beijing:China University of Petroleum (Beijing),2012.
    [8] 刁斌斌,高德利.邻井定向分离系数计算方法[J].石油钻探技术,2012,40(1):22-27. DIAO Binbin,GAO Deli.Calculation method of adjacent well oriented separation factors[J].Petroleum Drilling Techniques,2012,40(1):22-27.
    [9]

    GRILLS T L.Magnetic ranging technologies for drilling steam assisted gravity drainage well pairs and unique well geometries:a comparison of technologies[R].SPE 79005,2002.

    [10] 王德桂,高德利.管柱形磁源空间磁场矢量引导系统研究[J].石油学报,2008,29(4):608-611. WANG Degui,GAO Deli.Study of magnetic vector guide system in tubular magnet source space[J].Acta Petrolei Sinica,2008,29(4):608-611.
    [11] 李翠,高德利.救援井与事故井连通探测方法初步研究[J].石油钻探技术,2013,41(3):56-61. LI Cui,GAO Deli.Preliminary research on detection method for connecting relief well to blowout well[J].Petroleum Drilling Techniques,2013,41(3):56-61.
    [12] 席宝滨,高德利.U形水平井连通过程中的相对位置不确定性分析[J].石油钻探技术,2014,42(6):18-24. XI Baobin,GAO Deli.Analysis of the relative position uncertainty in the intersecting process of U-shaped horizontal wells[J].Petroleum Drilling Techniques,2014,42(6):18-24.
    [13] 唐劲飞,龚沈光,王金根.基于磁偶极子模型的目标定位和参数估计[J].电子学报,2002,30(4):614-616. TANG Jinfei,GONG Shenguang,WANG Jingen.Target positioning and parameter estimation based on magnetic dipole model[J].Acta Electronica Sinica,2002,30(4):614-616.
    [14] 张玉民,戚伯云.电磁学[M].北京:科学出版社,2000:79-96. ZHANG Yumin,QI Boyun.Electromagnetics[M].Beijing:Science Press,2000:79-96.
    [15] 陈小斌,赵国泽.关于人工源极低频电磁波发射源的讨论:均匀空间交流点电流源的解[J].地球物理学报,2009,52(8):2158-2164. CHEN Xiaobin,ZHAO Guoze.Study on the transmitting mechanism of CSELF waves:response of the alternating current point source in the uniform space[J].Chinese Journal of Geophysics,2009,52(8):2158-2164.
  • 期刊类型引用(7)

    1. 王群一,马晓丽,蒋明洁,李丹,毕永斌,顾潇. 高地层倾角油藏高低部位油井液量配比研究. 科学技术与工程. 2024(02): 538-544 . 百度学术
    2. 吴宽宽,冯其红,张先敏,孙红霞,于金彪,易红霞. 多层水驱油藏均衡驱替注采参数协同优化方法. 油气地质与采收率. 2023(05): 67-75 . 百度学术
    3. 葛丽珍,孟智强,祝晓林,岳宝林,朱志强. 气顶边水油藏中后期开发调整三维物理模拟研究. 石油钻探技术. 2023(06): 85-92 . 本站查看
    4. 张静,郑彬,李红英,刘玉娟,闫志明. 厚油层注采井间注入水纵向波及程度定量研究. 石油钻探技术. 2022(02): 118-125 . 本站查看
    5. 葛丽珍,王公昌,张瑞,张烈,张俊廷. 渤海S油田高含水期强水淹层避射原则研究. 石油钻探技术. 2022(03): 106-111 . 本站查看
    6. 秦立峰,陈民锋,付世雄,荣金曦. 弹塑性油藏注采渗流场分布及储量有效动用规律. 油气地质与采收率. 2022(03): 128-136 . 百度学术
    7. 赖书敏,赵文佳,苏建. 特高含水后期层系井网及注采优化方法与应用——以S油田T块为例. 天然气与石油. 2022(03): 56-61 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  15438
  • HTML全文浏览量:  150
  • PDF下载量:  15635
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-08-03
  • 刊出日期:  1899-12-31

目录

/

返回文章
返回