Calculation Method and Application for Water Content of Paleogene Reservoirs in L Oilfield
-
摘要: 珠江口盆地L油田古近系油藏储层非均质性强、油水关系复杂,常规流体性质识别方法难以满足测井评价需求。利用多相共渗分流量原理定量计算储层的含水率,判断储层的产液性质;在含油饱和度下限研究中引入含水率,并结合油层含水率的上限标准,利用解析法得到含水率、孔隙度与含油饱和度的关系,确定不同类型储层对应的含油饱和度下限。在L油田含水率定量识别储层流体性质的应用中,定量计算结果与测试、生产结果相符;确定了L油田Ⅰ类、Ⅱ类和Ⅲ类储层对应的含油饱和度下限分别为59%,48%和35%;同时,拟合得到含油饱和度下限与孔隙度之间的关系式,Ⅲ类储层对应的含油饱和度下限为35%。应用结果表明,根据含水率能够定量判断储层的产液性质;不同类型储层含油饱和度下限与孔隙度呈指数函数递增关系,可定量确定不同类型储层含油饱和度下限。Abstract: Paleogene reservoirs in the L Oilfield have strong heterogeneity and complex oil and water layers, so the conventional techniques for identification of fluid properties can hardly meet the demands of logging evaluation. By using the multiphase permeability flow distribution theory, the water contents of reservoirs can be calculated quantitatively to determine properties of produced fluids accurately. The water content was applied to study the lower limit of oil saturation, combined with upper limit of water content in oil reservoirs, the relationship among water contents, porosity and oil saturation can be determined by using analytical method to obtain the lower limit of oil saturations in different types of reservoirs. The quantitative calculating results for identificating reservoir fluid properties in the L Oilfield have coincidence rates above 90% with that of testing and actual production. The lower limits of oil saturation were determined as follows: 59% for class one reservoir, 48% for class two reservior, and 35% for class three reservoir. In addition, the functional equation of oil saturation lower limit and porosity has been obtained by fitting method, the lower limit of oil saturation was 35% corresponding to the class three reservoir. The application result showed that water content could be used to quantitatively determine the properties of the produced fluids. The lower limit of oil saturation increased at an exponential function with porosity in different types of reservoirs, which could be quantitatively determine the lower limit of oil saturation in different types of reservoirs.
-
Keywords:
- well logging /
- water cut /
- relative permeability /
- fluid property identification /
- oil saturation
-
满深1井位于新疆沙雅县境内,是塔里木油田部署在塔河南岸勘探新区的一口重点探井,地处塔北、塔中两大古隆起之间的鞍部,目的层为距今4.4亿年的古老海相碳酸盐岩地层,以裂缝和洞穴为主,埋深接近8 000.00 m。该井设计井深7 810.35 m,钻井施工中主要面临二叠系玄武岩漏失与垮塌,志留系塔塔埃尔塔格组钻速低、钻头磨损快,奥陶系桑塔木组易井斜与井壁失稳垮塌等工程技术难点,为此,进行了一系列技术攻关:应用混合钻头+螺杆钻具钻进,采取钻井液塌漏同治技术措施,形成了二叠系优快钻井技术;设计应用了个性化PDC钻头及扭力冲击器,形成了志留系减振提速技术;应用预弯曲动力学防斜钻具组合及高性能防塌水基钻井液,形成了奥陶系防斜防塌技术。这一系列技术确保了满深1井顺利钻至井深7 665.62 m完钻。
满深1井用ϕ10 mm油嘴测试求产,获得高产工业油气流,日产原油624 m3,日产天然气37.1×104 m3,标志着塔里木盆地腹部超深层油气勘探获得重大突破,发现一条区域级富含油气的断裂带,证实了塔北—塔中整体连片含油,新增有利勘探面积3 520 km2,为塔里木油田原油增储上产奠定了资源基础。通过该井的钻井完井作业,初步形成了超深层碳酸盐岩钻井完井技术,为塔里木油田深层油气勘探开发提供了技术支撑,对国内外超深井钻井提速提效也具有一定的借鉴意义。
1. 井眼概况及钻井技术难点
1.1 井身结构设计
满深1井目的层为奥陶系一间房组,埋深超过7 500.00 m,主要发育满深1号北东向走滑断裂,受区域应力影响,该断裂具有强压扭、张扭拉分段特性。该井设计采用四开井身结构(见图1):一开,采用ϕ444.5 mm钻头钻至井深1500.00 m,ϕ365.1 mm表层套管下至井深1 500.00 m,封固地表疏松地层;二开,采用ϕ333.4 mm钻头钻至井深5 500.00 m,ϕ273.1 mm套管下至井深5 498.00 m,封固二叠系易漏失地层,且预留志留系稳定地层便于开窗侧钻;三开采用ϕ241.3 mm钻头钻入一间房组2.00~4.00 m后中完,下入ϕ196.9 mm套管封固一间房组以上地层;四开采用ϕ168.3 mm钻头钻至B靶点完钻,裸眼完井,ϕ206.4 mm套管自井深5 200.00 m回接至井口。3个必封点分别是地表疏松地层、二叠系火成岩地层及一间房组顶部。
1.2 地层岩性特点
满深1井从上至下钻遇新生界第四系、新近系和古近系,中生界白垩系、侏罗系和三叠系,古生界二叠系、石炭系、志留系和奥陶系,主要岩性特点如下:
1)第四系、新近系和古近系埋深0~2 408.00 m,地层岩性以棕色泥岩与砂质泥岩、泥质粉砂岩为主。
2)白垩系、侏罗系和三叠系埋深2 408.00~3 817.00 m,上部地层岩性主要为泥岩与粉砂岩不等厚互层,下部地层岩性以含砾细砂岩及砂质小砾岩为主,底部地层岩性为厚层状灰色泥岩。
3)二叠系埋深3 817.00~4 365.00 m,厚约550.00 m,地层岩性以火成岩和砂泥岩为主,裂缝发育,其中火成岩主要是英安岩、玄武岩及凝灰岩,且玄武岩厚度大、应力高。
4)石炭系埋深4 365.00~4 852.00 m,厚约500.00 m,上部地层岩性以棕色、棕褐色及灰色泥岩为主,下部地层岩性为棕色泥岩、棕褐色钙质泥岩与浅灰褐色泥灰岩、灰岩略等厚互层,底部地层岩性为厚层状钙质胶结砾岩。
5)志留系埋深4 852.00~5 964.00 m,厚约1 110.00 m,包括塔塔埃尔塔格组和柯坪塔格组。塔塔埃尔塔格组厚约640.00 m,岩性为褐色、灰褐色粉砂质泥岩与浅灰色、褐灰色细砂岩、含沥青质细砂岩互层,石英含量高,研磨性强;柯坪塔格组厚约475.00 m,上部为浅灰色厚层状细砂岩、粉砂岩夹泥岩,中部为厚层状泥岩,下部为厚层状细砂岩。
6)奥陶系桑塔木组埋深6 260.00~7 556.00 m,厚约1 300.00 m,地层岩性主要为中厚层状灰色泥岩、泥灰岩,黏土矿物含量达40.9%,呈弱水敏性,表面存在大量亚微米级裂缝。
7)目的层奥陶系一间房组厚约106.00 m,岩性主要为灰色泥晶灰岩及生屑、砂屑灰岩,裂缝及孔洞发育。
1.3 钻井工程难点
在分析满深1井地质特征的基础上,结合其井身结构设计,并参考邻井井下故障统计结果,认为该井钻井主要存在以下技术难点。
1)二叠系火成岩地层裂缝发育,对压力敏感,易形成诱导裂缝,导致发生漏失,且漏速变化大,从微漏到钻井液失返;玄武岩地层因应力释放,出现井壁掉块甚至井眼垮塌,易导致卡钻等井下故障[1],因此,钻进二叠系的过程中易出现塌漏同存的问题。例如,顺北1-2H井在钻进二叠系时,钻至井深4 455.00 m发生掉块卡钻,损失钻进时间3.4 d;顺北71X井二叠系大段缝洞发育,5 000.00~5 003.00 m井段出现放空现象,且钻进期间连续发生漏失,漏失钻井液达5 026.31 m3。
2)志留系塔塔埃尔塔格组含沥青质砂岩,可钻性差(可钻性级值7.5~8.5),机械钻速低,PDC钻头易磨损,钻头使用寿命短。
3)奥陶系桑塔木组倾角大,钻井过程中井斜控制困难,防斜打直难度大。例如,顺北4井6 430.00~6 850.00 m井段地层倾角约10°,6 850.00~7 180.00 m井段地层倾角增至15°~20°,直井段最大井斜角达13.58°,且纠斜困难。
4)在钻进奥陶系桑塔木组破碎带的过程中,因应力释放易出现井眼失稳垮塌,且亚微米级裂缝对钻井液滤液敏感性强,安全钻进难度大。如顺北4井钻进桑塔木组时,发生井壁失稳,处理时间长达152 d。
2. 钻井关键技术
针对二叠系塌漏同存、志留系塔塔埃尔塔格组可钻性差、奥陶系桑塔木组井斜控制难度大与井壁易失稳垮塌等钻井技术难点,开展了针对性技术攻关,形成了二叠系优快钻井技术、志留系减振提速技术和奥陶系防斜防塌技术,确保了满深1井顺利完钻。
2.1 二叠系地层优快钻井技术
2.1.1 钻井液塌漏同治技术
在分析二叠系井漏与井眼坍塌机理的基础上[2],提出了钻井液塌漏同治技术思路:一方面强化钻井液封堵性能,以减少钻井液滤液进入岩石裂缝,同时强化钻井液抑制能力,降低钻井液滤失量,以形成更致密的滤饼,从而提高地层承压能力;另一方面尽可能降低钻井液密度,从而降低井内液柱压力,避免出现诱导裂缝沟通更多微裂缝,造成井漏。
基于塌漏同治的技术思路,选用聚磺钻井液钻进二叠系,并加入封堵护壁剂FPS,以强化其抑制、封堵、护壁和固壁能力,以便在低密度钻井液条件下保持井壁稳定,从而拓宽钻井液安全密度窗口,在稳定易塌地层的同时,降低井漏风险。聚磺钻井液的基本配方为3.0%~5.0%膨润土+0.1%~0.5%烧碱+0.3%~0.8%大分子聚合物+2.0%~4.0%磺化酚醛树脂+2.0%~4.0%磺化褐煤+3.0%~5.0%防塌剂+1.0%~3.0%液体润滑剂+7.0%~10.0% KCl+0.2%~0.4%聚合物降滤失剂+加重剂。
为满足满深1井二叠系优快钻进的需要,制定了钻井液维护处理措施:
1)进入二叠系前调整好钻井液性能,在井浆中加入2.0%磺化酚醛树脂和2.0% 磺化褐煤,将井浆转换成聚磺钻井液,确保钻井液的高温高压滤失量小于12 mL。
2)维持CL–质量浓度小于30 000 mg/L,K+质量浓度不低于10 000 mg/L,加入0.5%~1.0%大分子聚合物,以增强钻井液的包被抑制能力。
3)进入二叠系中、下部硬脆性泥岩前将钻井液密度提高至约1.30 kg/L,同时逐步加入3.0%~5.0%液体防塌剂,配合使用超细碳酸钙,以增强钻井液的封堵性能,改善滤饼质量。
4)控制钻井液API滤失量小于5 mL,高温高压滤失量小于12 mL,以降低钻井液的滤失量,防止井壁坍塌;加入2.0%~3.0%液体润滑剂,使钻井液含油量达到3.0%以上,以降低摩阻。
2.1.2 混合钻头+螺杆钻具提速技术
满深1井二叠系玄武岩硬度高、研磨性强、抗压强度高,应用常规PDC钻头钻进极易出现崩齿、断齿等问题,造成钻头早期损坏,从而影响机械钻速,也会增加钻井成本。为此,在分析国内外特种钻头主要特性及现场应用效果的基础上[3-11],选用了ϕ333.4 mm KPM1633DST型混合钻头及ϕ244.0 mmH5LZ244×7.0低转速大功率螺杆钻具,采用复合切削方式钻穿二叠系玄武岩等硬地层,这样不仅可以使钻进过程的扭矩平稳、增加单只钻头进尺和提高机械钻速,还可以降低复杂地层掉块卡钻的风险,从而实现二叠系快速钻进。例如,顺北1-8H井使用混合钻头一趟钻钻穿二叠系玄武岩井段,顺北5-11H井使用混合钻头两趟钻钻穿厚度325.50 m的玄武岩井段,且井下安全无故障。
KPM1633DST型混合钻头主要由3个PDC刀翼和3个牙轮构成(如图2所示),其破岩机理为:在钻进硬地层时,牙轮齿高于PDC切削齿,会对岩石产生冲击破碎,形成不连续的齿坑;而PDC切削齿则通过剪切破坏将不连续齿坑连通,从而形成完整破岩。其中,PDC刀翼为螺旋刀翼,并镶嵌2排ϕ16 mm切削齿,可提高钻头在中硬地层的吃入能力和耐磨性;牙轮为镶齿型,镶嵌537个勺形齿,具有切削效率高和抗破碎能力强等特点,可提高钻头在中硬地层的机械钻速和延长钻头的使用寿命。
考虑混合钻头牙轮在高转速下容易失效,并兼顾提高机械钻速,选用了H5LZ244×7.0低转速大功率螺杆钻具。该螺杆钻具的定子橡胶层薄且应力分布均匀,容积率高,较常规螺杆输出的动力更大,同时,其抗变形能力强,密封性好,温胀、溶胀均匀,具有良好的散热性,定子、转子能在更长时间内保持正常配合,较常规螺杆钻具有更长的使用寿命。
钻进二叠系时采用的钻具组合为:ϕ333.4 mm KPM1633DST型混合钻头+ϕ244.0 mm直螺杆+ϕ228.0 mm钻铤×1根+ϕ203.0 mm浮阀+ϕ203.0 mm 钻铤×1根+ϕ203.0 mm无磁钻铤+ϕ203.0 mm钻铤×9根+挠性短节+ϕ203.0 mm随钻震击器+ϕ203.0 mm钻铤×1根+ϕ139.7 mm加重钻杆×6根+ϕ139.7 mm钻杆。主要钻井参数:钻压20~160 kN,转速160 r/min(顶驱50 r/min +螺杆转速110 r/min),排量50 L/s,泵压 19 MPa。
2.2 志留系地层减振提速技术
满深1井志留系塔塔埃尔塔格组的硬脆性和非均质强,应用常规PDC钻头和螺杆钻具进行复合钻进时,钻头易出现弹跳、粘滑振动等问题,易导致钻头发生早期磨损,造成破岩效果差、机械钻速低和钻头进尺少等问题。为此,在调研国内外钻井减振提速工具的基础上[12-16],以减轻恶性振动、提高能量利用率和强化钻头切削地层的稳定性为目的,应用了个性化PDC钻头和TorkBuster型扭力冲击器,形成了志留系地层减振提速技术。
个性化PDC钻头具有局部加厚的复合片,钻进时以点切入,具有摩削热低、岩屑堆积少的优点,能成倍提高复合片的热稳定性,从而增强了复合片的抗研磨性并延长其寿命。同时,岩石剪切载荷由“点”向“面”分解,降低了岩石对钻头的冲击力,提高了钻头的抗冲击性。配合扭力冲击器,采用以“点”带“线”到“面”的“犁形”切入方式,岩屑颗粒大,加上扭力冲击高频“点”向冲击,破岩效率极高。与常规PDC钻头相比,该钻头耐磨性提高60%,抗冲击性提高50%,使用寿命平均延长60%。
TorkBuster型扭力冲击器利用钻井液能量推动涡轮高速旋转,从而带动棘形轮转动并提供一个高频扭力直接传递给PDC钻头,使钻头切削齿保持较为稳定的扭矩切削岩石[17-18]。这种直接作用于钻头上的高频(750~1 500 min–1)、低幅扭力冲击能辅助PDC钻头旋转剪切破岩,一方面减弱或消除了粘滑振动,提高了旋转驱动系统能量传递到钻头上的效率;另一方面增加了扭转冲击破岩方式,进一步提高了钻头行程钻速。
2.3 奥陶系地层防斜防塌技术
2.3.1 预弯曲动力学防斜钻具组合
满深1井奥陶系高陡地层具有倾角大、增斜趋势强的特点,应用直螺杆、单弯螺杆钟摆钻具钻进时的防斜、纠斜效果不好,且由于钻压受限影响机械钻速。尤其是桑塔木组受走滑断裂影响,直井段使用螺杆钻具+PDC钻头由井深6 261.00 m复合钻进至井深6 537.00 m时,井斜角由2.30°增至7.80°,增斜率达到(0.2°~0.3°)/10m,地层增斜趋势较强。为此,该井在钻进奥陶系高陡构造时,为防斜打直并提高机械钻速,选用了预弯曲动力学防斜钻具组合:ϕ241.3 mm ES1635SG型PDC钻头+1.50°单弯螺杆(抗温150 ℃,带ϕ238.0 mm下稳定器)+ϕ238.0 mm稳定器+ϕ177.8 mm浮阀+ϕ177.8 mm无磁钻铤+ϕ177.8 mm MWD+ϕ196.9 mm钻铤×4根+ϕ177.8 mm钻铤×12根+ϕ127.0 mm无磁承压钻杆+ϕ127.0 mm加重钻杆×15根+ϕ127.0 mm钻杆+ϕ149.2 mm钻杆。主要钻井参数:钻压20~60 kN,转速30~35 r/min,排量32 L/s,泵压21 MPa。
预弯曲动力学防斜钻具组合使下部钻具处于涡动状态,引导其变形释放钻压,使其在井眼中的动力学行为产生较大的降斜力,同时消除由于钻头指向不均匀造成的增斜力,满足控制地层自然造斜的需要,从而达到防斜打快的目的[19]。另外,与钟摆钻具组合相比,应用该钻具组合钻进时,钻压能提高50%以上,可以有效提高机械钻速。同时,配合MWD随钻测量工具能实时监测井斜角变化,及时进行定向纠斜,大大提高了纠斜效率。例如,顺南区块却尔却克组最大地层倾角26°[19],顺南蓬1井却尔却克组厚2 429.00 m,使用预弯曲动力学防斜钻具组合钻进时防斜效果显著,最大井斜角仅2.64°。
2.3.2 高性能防塌水基钻井液
满深1井奥陶系泥页岩地层破碎、微裂缝发育,在液柱压力、毛细管力等作用下,钻井液滤液会沿微裂缝、微孔洞进入地层内部,一方面会促进钻井液滤液与页岩中黏土矿物间的作用,使黏土矿物吸水膨胀,导致页岩强度降低;另一方面会引起水力劈裂作用,促进泥页岩破裂造成井壁失稳[20]。为此,按照“致密封堵+严控滤失”的技术思路,选用了高性能防塌水基钻井液,以确保奥陶系泥页岩地层的井壁稳定。通过强化钻井液的抑制防塌性能,提高了钻井液滤液的矿化度,增强了对微裂缝地层的封堵能力;同时,适当提高钻井液密度,严格控制高温高压滤失量,充分利用固控设备,深度清除劣质固相,进一步提高了钻井液与地层的适应性,解决了泥页岩地层由于裂缝、微裂缝发育导致的井壁失稳问题。
高性能防塌水基钻井液的基本配方为3.0%~5.0%膨润土+0.3%~0.5%烧碱+3.0%~5.0%磺化褐煤+3.0%~4.0%磺化酚醛树脂+3.0%~5.0%防塌剂+1.0%~3.0%润滑剂+2.0%~5.0%除硫剂+2.0%油溶暂堵剂+1.0%纤维暂堵剂+2.0%~4.0%超细碳酸钙+加重剂。主要性能参数:密度1.44 kg/L,漏斗黏度66~70 s,API滤失量1.5 mL,高温高压滤失量8.0 mL,塑性黏度37 mPa·s;动切力7 Pa,静切力2/9 Pa;pH值8.5,滤饼厚度0.5 mm。
应用高性能防塌水基钻井液钻进奥陶系泥页岩地层时,为确保井眼稳定,制定了相应的钻井液维护处理措施:
1)提高泥岩抑制剂含量,加入0.4%的胺基井壁稳定剂,K+质量浓度提至35 000 mg/L以上,磺化酚醛树脂和磺化褐煤的胶液体积分数提至8.0%~10.0%。
2)严格控制钻井液的API滤失量低于2 mL、高温高压滤失量(测试温度150 ℃)低于8 mL。
3)强化钻井液封堵性能,不定时补充优质膨润土浆及超细碳酸钙,添加微米/纳米级刚性、塑性颗粒,提高微纳米封堵防塌效果,适当提高钻井液黏度和切力,保持漏斗黏度约60 s,含油量4.0%~5.0%。
4)适当提高钻井液密度,由1.38 kg/L提高至1.44 kg/L,进一步平衡地层坍塌压力。
5)定期使用密度1.70 kg/L、漏斗黏度100 s的重稠浆携砂,以保持井眼清洁。
6)加强固控设备使用,振动筛使用260目筛布,配合离心机清除劣质固相。
3. 现场应用效果分析
3.1 二叠系井眼稳定,钻速提高
1)满深1井二叠系应用了聚磺钻井液,其密度最小为1.25 kg/L,具有较强的抑制、封堵、护壁和固壁能力,实现了二叠系安全钻进,未发生漏失及垮塌等井下故障。与顺北4井相比,满深1井二叠系井下故障处理时间减少66.72 d;与果勒1井相比,满深1井二叠系井段钻井液漏失量减少309 m3。
2)应用混合钻头+螺杆钻具提速技术一趟钻钻穿二叠系玄武岩地层(4 041~4 181 m井段),机械钻速2.35 m/h,与邻区块富源210H井牙轮钻头钻速(1.60 m/h)相比提高了46.88%。满深1井二叠系平均机械钻速达5.16 m/h,与富源210H井(1.41 m/h)相比提高了265.96%,提速效果非常显著。
3.2 志留系地层减振提速效果显著
满深1井二开钻穿志留系塔塔埃尔塔格组(4 885.00~5 209.45 m井段)共使用6只PDC钻头(如表1所示),单只钻头平均进尺53.37 m,平均纯钻时间16.58 h,起出后磨损严重,钻头肩部、鼻部崩齿及掉齿多,磨损最严重处钻头外径由333.4 mm缩小至238.0 mm。
表 1 满深1井志留系塔塔埃尔塔格组钻头应用情况Table 1. The application of bit in the Silurian Tataaiertage Formation of Well Manshen 1PDC钻头型号 钻进井段/m 进尺/
m纯钻时间/
h机械钻速/
(m·h–1)DXS1654 4 885.00~4 918.00 33.00 11.0 3.00 DXS1654 4 918.00~4 975.00 57.00 19.0 3.00 KS1652DGRX 4 975.00~5 014.80 39.80 23.0 1.73 DXS1654 5 016.65~5 032.60 15.95 10.0 1.60 KS1652DGRX 5 032.60~5 124.59 91.99 17.0 5.40 KS1652DGRX 5 127.00~5 209.45 82.45 19.5 4.23 满深 1 井三开5 216~5 985 m井段应用了个性化PDC钻头+TorkBuster扭力冲击器的减振提速技术,一趟钻钻穿志留系,进尺769.00 m,纯钻时间168.50 h,机械钻速4.56 m/h,与表1中的6只钻头相比,单只钻头进尺和机械钻速分别提高了1 341.02%和41.82%,而且钻进期间扭矩稳定在15.9 kN·m左右,且波动范围小,粘滑振动弱,减振效果明显。
3.3 奥陶系防斜打直及井眼稳定效果明显
1)奥陶系高陡地层(6 537~7 230 m井段)应用预弯曲动力学防斜钻具组合钻进,结合间断定向反抠与双驱钻进方式,兼顾反抠井眼轨迹的平滑度与双驱钻进的稳斜打直效果,逐步将井斜角由7.80°降至1.37°,防斜打直效果明显,并避免了因井眼轨迹不平滑而导致后续施工摩阻大等问题。邻井顺北4井采用“轻压吊打”的方式钻进该段地层,井斜角从9.60°增至13.58°,后降至3.80°,但是水平位移超标,难以钻至靶点,最后回填定向侧钻,导致钻井周期延长57.18 d。
2)满深1井三开钻至井深7 392.54 m时,振动筛不断有掉块返出,扭矩在14~32 kN·m之间大幅高频波动,上提钻具阻卡严重,下放钻具时需划眼,为此,应用旋转导向系统钻至井深7 407.00 m,因井下卡钻风险增大,起钻换下旋转导向系统,继续应用MWD+螺杆钻具钻进,上提下放钻具时仍然阻卡严重,振动筛仍有掉块返出,钻至井深7 480.57 m时上部钻具断裂,被迫回填侧钻。该井侧钻时应用了高性能防塌水基钻井液,两趟钻从井深7 150.00 m顺利钻至井深7 509.50 m,安全钻穿硬脆性泥岩,钻进过程中扭矩为17.7~20.2 kN·m,上提下放钻具时阻卡少、摩阻小,返出岩屑完整清晰,取得了很好的井壁稳定效果。邻井顺北4井在钻进相同地层时,井壁垮塌导致侧钻2次,处理井下故障耗时268 d,与之相比,满深1井节约井下故障处理时间247 d。
4. 结论与建议
1)满深1号断裂与顺北4号断裂带相连,工程地质特征复杂,面临二叠系玄武岩塌漏同存,志留系塔塔埃尔塔格组机械钻速低、钻头磨损快,奥陶系桑塔木组井斜与井壁易失稳垮塌等工程技术难点,严重影响了塔北隆起油气勘探开发进程。
2)针对满深1井存在的钻井技术难点,研究应用了二叠系优快钻井技术、志留系减振提速技术和奥陶系防斜防塌技术,确保了该井顺利完钻,并获得高产工业油气流,实现了塔里木盆地腹部超深层油气勘探的重大突破,初步形成了超深层碳酸盐岩钻井完井技术,为塔里木油田深层油气勘探开发提供了技术支撑。
3)建议推行地质工程一体化,深入分析不同断裂带地质特征,持续研究分层提速、井壁稳定和防漏堵漏等关键技术,研发、引进与改进配套的工具、工艺,形成完善的超深层碳酸盐岩钻井完井技术体系,实现塔里木油田深层油气的高效勘探开发。
-
[1] 葛家旺,秦成岗,朱筱敏,等.惠州凹陷HZ25-7构造带文昌组低孔低渗砂岩储层特征和成因机理[J].岩性油气藏,2014,26(4):36-42. GE Jiawang,QIN Chenggang,ZHU Xiaomin,et al.Characteristics and origin of low porosity and low permeability sandstone reservoir of Wenchang Formation in HZ25-7 Structural Belt of Huizhou Depression[J].Lithologic Reservoirs,2014,26(4):36-42. [2] 陈淑慧,张晓宇.惠州凹陷西江-惠州转换带文昌组储层特征及控制因素研究[J].岩性油气藏,2013,25(6):8-13. CHEN Shuhui,ZHANG Xiaoyu.Reservoir characteristics and controlling factors of Wenchang Formation in Xijiang-Huizhou Transform Zone,Huizhou Sag[J].Lithologic Reservoirs,2013,25(6):8-13. [3] 施和生,雷永昌,吴梦霜,等.珠一坳陷深层砂岩储层孔隙演化研究[J].地学前缘,2008,15(1):169-175. SHI Hesheng,LEI Yongchang,WU Mengshuang,et al.Research on the evolution of pores in deep sandstone reservoir in Zhu 1 Depression[J].Earth Science Frontiers,2008,15(1):169-175. [4] 龙更生,施和生,郑荣才,等.珠江口盆地惠州凹陷深部储层成岩作用与孔隙演化[J].岩石矿物学杂志,2011,30(4):665-673. LONG Gengsheng,SHI Hesheng,ZHENG Rongcai,et al.Diagenesis and porosity evolution of deep reservoirs in Huizhou Depression,Pearl River Mouth Basin[J].Acta Petrologica Et Mineralogica,2011,30(4):665-673. [5] 龙更生,施和生,郑荣才,等.珠江口盆地惠州凹陷深部古近系储层特征及发育控制因素[J].海相油气地质,2011,16(3):71-78. LONG Gengsheng,SHI Hesheng,ZHENG Rongcai,et al.Characteristics and development controlling factors of Paleogene deep reservoirs in Huizhou Depression,Pearl River Mouth Basin[J].Marine Origin Petroleum Geology,2011,16(3):71-78. [6] 胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1):14-25. HU Zuowei,LI Yun,HUANG Sijing,et al.Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J].Advances in Earth Science,2012,27(1):14-25. [7] 鲁新川,史基安,葛冰,等.准噶尔盆地西北缘中拐-五八区二叠系上乌尔禾组砂砾岩储层特征[J].岩性油气藏,2012,24(6):54-59. LU Xinchuan,SHI Ji’an,GE Bing,et al.Characteristics of glutenite reservoir of Permian Upper Wuerhe Formation in Zhongguai-Wuba Area in the northwestern margin of Junggar Basin[J].Lithologic Reservoirs,2012,24(6):54-59. [8] 高楚桥,张超谟,肖承文,等.L油田含水率计算及水淹等级划分[J].测井技术,2004,28(1):75-77. GAO Chuqiao,ZHANG Chaomo,XIAO Chengwen,et al.Watercut calculation and classification of waterflooded grades in L Oilfield[J].Well Logging Technology,2004,28(1):75-77. [9] 高楚桥.复杂储层测井评价方法[M].北京:石油工业出版社,2003:134-140. GAO Chuqiao.Well logging evaluation of complex reservoirs[M].Beijing:Petroleum Industry Press,2003:134-140. [10] 谢进庄,吴锡令.利用生产测井资料估算油水相对渗透率曲线[J].石油勘探与开发,2004,31(2):64-66. XIE Jinzhuang,WU Xiling.Estimation of oil water relative permeability curves from production logging data[J].Petroleum Exploration and Development,2004,31(2):64-66. [11] 桑丹,姚约东,周练武,等.利用压汞资料计算复杂断块油藏油水相对渗透率曲线[J].断块油气田,2015,22(5):606-609. SANG Dan,YAO Yuedong,ZHOU Lianwu,et al.Determination of oil-water relative permeability curves by using mercury injection data for complex fault block reservoir[J].Fault-Block Oil Gas Field,2015,22(5):606-609. [12] 隋祥军,金云智,卫金平.基于压汞和相渗实验确定束缚水饱和度[J].国外测井技术,2009(1):51-52. SUI Xiangjun,JIN Yunzhi,WEI Jinping.Determination of the bound water saturation based on the mercury penetration and phase permeability experiments[J].World Well Logging Technology,2009(1):51-52. [13] 戚涛,吕栋梁,李标,等.四点井网含水率与采出程度关系的确定[J].断块油气田,2014,21(2):208-212. QI Tao,LYU Dongliang,LI Biao,et al.Determination of relationship between water cut and recovery percent of four-spot pattern[J].Fault-Block Oil Gas Field,2014,21(2):208-212. [14] 马明学,鞠斌山,王书峰.注水开发油藏润湿性变化及其对渗流的影响[J].石油钻探技术,2013,41(2):82-86. MA Mingxue,JU Binshan,WANG Shufeng.Wettability change and its effect on flow in waterflooding reservoirs[J].Petroleum Drilling Techniques,2013,41(2):82-86. [15] 胡文亮,冯进,高楚桥,等.利用测井资料计算的含水率识别恩平凹陷低阻油层[J].海洋石油,2013,33(3):65-69. HU Wenliang,FENG Jin,GAO Chuqiao,et al.Identification of the low resistivity reservoirs by water cut calculated from well-logging data in Enping Sag[J].Offshore Oil,2013,33(3):65-69. [16] 管耀.利用毛管压力资料求原始含油饱和度方法探讨:以绥中36-1油田23井为例[J].勘探地球物理进展,2009,32(5):365-369. GUAN Yao.Computing oil saturation using capillary pressure data case study of Well 23 in Suizhong 36-1 Oilfield[J].Progress in Exploration Geophysics,2009,32(5):365-369. [17] 雍世和,张超模.测井数据处理与综合解释[M].东营:石油大学出版社,2002:168-169. YONG Shihe,ZHANG Chaomo.Logging data processing and comprehensive interpretation[M].Dongying:Petroleum University Press,2002:168-169. [18] 李喜莲,万永红,吴美娥,等.多方法综合确定西峡沟区块含油饱和度下限研究[J].吐哈油气,2010,15(4):333-334. LI Xilian,WAN Yonghong,WU Meie,et al.Determination of lower limit of oil saturation by a variety of ways in Block Xixiagou[J].Tuha Oil Gas,2010,15(4):333-334. [19] 王洪亮,王军,杨英波,等.测井技术在X气田油藏描述中的应用[J].岩性油气藏,2009,21(3):76-81. WANG Hongliang,WANG Jun,YANG Yingbo,et al.Application of logging technology to reservoir description in X Gasfield[J].Lithologic Reservoirs,2009,21(3):76-81. [20] 赵思远,武富礼,袁伟,等.鄂尔多斯盆地B区延长组长8储层四性关系及有效厚度下限研究[J].辽宁化工,2014,43(3):321-323. ZHAO Siyuan,WU Fuli,YUAN Wei,et al.Research on four-property relationship and net pay cut-off thickness of Chang 8 Reservoir in Yanchang Formation of B Area,Ordos Basin[J].Liaoning Chemical Industry,2014,43(3):321-323. [21] 胡向阳,吴洪深,高华,等.珠江口盆地油气田测井区域储层参数研究[J].石油天然气学报,2010,32(5):16-20. HU Xiangyang,WU Hongshen,GAO Hua,et al.Study of reservoir parameters in logging area of oil and gas field in Pearl River Mouth Basin[J].Journal of Oil and Gas Technology,2010,32(5):16-20. [22] 方翔,尚希涛,王潇,等.YD油田碳酸盐岩储层测井评价方法[J].石油钻探技术,2015,43(3):29-34. FANG Xiang,SHANG Xitao,WANG Xiao,et al.The logging evaluation method of carbonate reservoir in the YD Oilfield[J].Petroleum Drilling Techniques,2015,43(3):29-34. -
期刊类型引用(7)
1. 李思琪,陈卓,李杉,李玮,郭金玉,刘德伟. 基于定切深和状态依赖时滞的共振冲击钻井系统动力学特性. 中国石油大学学报(自然科学版). 2024(01): 124-132 . 百度学术
2. 李根生,穆总结,田守嶒,黄中伟,孙照伟. 冲击破岩钻井提速技术研究现状与发展建议. 新疆石油天然气. 2024(01): 1-12 . 百度学术
3. 张诗达,朱勇,高强,苏红. 旋冲钻井技术研究现状与展望. 排灌机械工程学报. 2024(05): 497-507 . 百度学术
4. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 . 百度学术
5. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 . 百度学术
6. 刘永旺,魏森,管志川,邹德永,梁红军,陶兴华,玄令超,张建龙. 旋转冲击钻井方法硬岩破岩钻进特性的实验研究. 实验技术与管理. 2022(05): 44-48+59 . 百度学术
7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 3160
- HTML全文浏览量: 76
- PDF下载量: 3236
- 被引次数: 11