A Model for Predicting the Volume of Stimulated Reservoirs
-
摘要: 为进一步明确储层改造体积内涵,完善体积改造技术及提高改造体积预测的准确性,采用物理模拟试验分析了声波事件与裂缝形态的关系,并基于物理模拟试验结果建立了储层改造体积预测模型。利用建立的模型计算了不同导流能力、不同压裂液黏度以及不同缝内净压力下的储层改造体积,计算结果表明:储层改造体积与压裂液黏度呈反比关系,与裂缝导流能力和缝内净压力呈线性关系;压裂液黏度对储层改造体积的影响最大,裂缝导流能力次之,缝内净压力最小。利用所建模型对国内某油田7口压裂井的致密储层改造体积进行了预测,并拟合了预测储层改造体积与压裂后试油产量的关系,两者呈线性关系,相关系数为0.840。这表明,所建模型预测的储层改造体积与压裂后试油产量具有较好的相关性,可以利用其指导体积压裂。Abstract: In order to better understand the stimulated reservoir volume (SRV), to improve the SRV technology and predict it more accurately, large-scale physical simulation tests were deployed to analyze the relationship between acoustic events and fracture morphology. Based on the results of the physical simulation tests, a SRV predicting model was built for calculating the stimulated reservoir volumes with different fracture conductivity, the viscosity of fracturing fluid and net pressure. The result showed that calculated SRV is in inverse proportion to fracturing fluid viscosity, and in linear relationship with both fracture conductivity and net pressure. The SRV is the most sensitive to fracturing fluid viscosity, followed by fracture conductivity, and then the least to net pressure. The SRV model has been used to predict the stimulated reservoir volume in 7 fractured wells in a domestic tight oil field, the fitting curve for SRVs and post-fracturing oil production rate was made to be a linear relationship, with the coefficient of correlation 0.840. It is indicated that the SRV predicting model was in better correlation with the post-fracturing oil production rate, which, in the future, can be taken as the guidance of SRV fracturing.
-
Keywords:
- fracturing /
- stimulated reservoir volume /
- physical simulation /
- fracture /
- mathematical model /
- fracturing fluid
-
-
[1] MAYERHOFER M J,LOLON E,WARPINSKI N,et al.What is stimulated reservoir volume?[J].SPE Production Operations,2010,25(1):89-98.
[2] WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al.Stimulating unconventional reservoirs:maximizing network growth while optimizing fracture conductivity[J].Journal of Canadian Petroleum Technology,2008,48(10):39-51.
[3] 吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术:内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358. WU Qi,XU Yun,WANG Xiaoquan,et al.Volume fracturing technology of unconventional reservoirs:connotation,optimization design and implementation[J].Petroleum Exploration and Development,2012,39(3):352-358. [4] COULTER G R,GROSS B C,BENTON E G,et al.Barnett shale hybrid fracs:one operator’s design,application,and results[R].SPE 102063,2006.
[5] COULTER G R,BENTON E G,THOMSON C L,et al.Water fracs and sand quantity:a Barnett shale example[R].SPE 90891,2004.
[6] MEYER B R,BAZAN L W.A discrete fracture network model for hydraulically induced fractures-theory,parametric and case studies[R].SPE 140514,2011.
[7] WENG X,KRESSE O,COHEN C,et al.Modeling of hydraulic fracture propagation in a naturally fractured formation[R].SPE 140253,2011.
[8] WU R,KRESSE O,WENG X,et al.Modeling of interaction of hydraulic fractures in complex fracture networks[R].SPE 152052,2012.
[9] KRESSE O,COHEN C,WENG X,et al.Numerical modeling of hydraulic fracturing in naturally fractured formations:the 45th US Rock Mechanics/Geomechanics Symposium[C].San Francisco,CA,June 26-29,2011.
[10] QIN G,CHEN R,GONG B,et al.Data-driven Monte Carlo simulations in estimating the stimulated reservoir volume (SRV) by hydraulic fracturing treatments[R].SPE 154537,2012.
[11] YU G,AGUILERA R.3D analytical modeling of hydraulic fracturing in stimulated reservoir volume[R].SPE 153486,2012.
[12] WARPINSKI N R,MAYERHOFER M J,AGARWAL K,et al.Hydraulic fracture geomechanics and microseismic soure mechanisms[R].SPE 158935,2012.
[13] ZOBACK M D,KOHLI A,DAS I,et al.The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs[R].SPE 155476,2012.
[14] 冯金德,程林松,李春兰,等.裂缝性低渗透油藏等效连续介质模型[J].石油钻探技术,2007,35(5):94-97. FENG Jinde,CHENG Linsong,LI Chunlan,et al.Equivalent continuous medium model for fractured low-permeability reservoir[J].Petroleum Drilling Techniques,2007,35(5):94-97. [15] 刘建军,刘先贵,胡雅礽,等.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报:自然科学版,2000,23(增刊1):158-160. LIU Jianjun,LIU Xiangui,HU Yareng,et al.The equivalent continuum media model of fracture sand tone reservoir[J].Journal of Chongqing University:Natural Science Edition,2000,23(supplement 1):158-160. [16] RICKMAN R,MULLEN M J,PETRE J E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale[R].SPE 115258,2008.
[17] 张旭,蒋廷学,贾长贵,等.页岩气储层水力压裂物理模拟试验研究[J].石油钻探技术,2013,41(2):70-74. ZHANG XU,JIANG Tingxue,JIA Changgui,et al.Physical simulation of hydraulic fracturing of shale gas reservoir[J].Petroleum Drilling Techniques,2013,41(2):70-74. [18] 翁定为,雷群,胥云,等.缝网压裂技术及其现场应用[J].石油学报,2011,32(2):280-284. WENG Dingwei,LEI Qun,XU Yun,et al.Network fracturing techniques and its application in the field[J].Acta Petrolei Sinica,2011,32(2):280-284. [19] 蒋廷学,贾长贵,王海涛,等.页岩气网络压裂设计方法研究[J].石油钻探技术,2011,39(3):36-40. JIANG Tingxue,JIA Changgui,WANG Haitao,et al.Study on network fracturing design method in shale gas[J].Petroleum Drilling Techniques,2011,39(3):36-40. -
期刊类型引用(9)
1. 李新发,李婷,刘博峰,张峰,肖志明,王浩帆. 基于压裂监测的致密储层甜点识别. 断块油气田. 2020(05): 603-607 . 百度学术
2. 冯福平,黄芮,雷扬,GUO Boyun,胡超洋,王胡振. 基于能量理论的体积压裂工程改造效果评价模型及应用. 中国石油大学学报(自然科学版). 2019(01): 81-89 . 百度学术
3. 田林海,屈刚,雷鸣,于德成,张伟. 玛湖油田玛18井区体积压裂对钻井作业干扰问题的探讨. 石油钻探技术. 2019(01): 20-24 . 本站查看
4. 刘子雄,王艳红,高杰,冯青,樊爱彬. 基于压裂返排数据的有效破裂体积计算方法. 石油地质与工程. 2019(02): 112-115 . 百度学术
5. 魏旭,张永平,尚立涛,王海涛,吴森昊. 多段多簇压裂储层改造效果影响因素分析. 油气地质与采收率. 2018(02): 96-102+114 . 百度学术
6. 修乃岭,严玉忠,管保山,王欣,王臻,严星明. 基于物质平衡原理对页岩气压裂储层有效改造体积进行估算方法研究. 石油地质与工程. 2018(06): 103-105 . 百度学术
7. 白晓虎,苏良银,赵伯平,达引朋,吴甫让,段鹏辉. 注采井网条件下水平井体积压裂重复改造优化设计. 断块油气田. 2017(02): 194-198 . 百度学术
8. 隋阳,刘建伟,郭旭东,向洪,王波,王涛. 体积压裂技术在红台低含油饱和度致密砂岩油藏的应用. 石油钻采工艺. 2017(03): 349-355 . 百度学术
9. 于永军,朱万成,李连崇,魏晨慧,代风,刘书源,王卫东. 水力压裂裂缝相互干扰应力阴影效应理论分析. 岩石力学与工程学报. 2017(12): 2926-2939 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 3123
- HTML全文浏览量: 67
- PDF下载量: 2997
- 被引次数: 16