大通径桥塞压裂用可溶解球研制及性能评价

魏辽, 马兰荣, 朱敏涛, 吴晋霞, 朱玉杰, 韩峰

魏辽, 马兰荣, 朱敏涛, 吴晋霞, 朱玉杰, 韩峰. 大通径桥塞压裂用可溶解球研制及性能评价[J]. 石油钻探技术, 2016, 44(1): 90-94. DOI: 10.11911/syztjs.201601017
引用本文: 魏辽, 马兰荣, 朱敏涛, 吴晋霞, 朱玉杰, 韩峰. 大通径桥塞压裂用可溶解球研制及性能评价[J]. 石油钻探技术, 2016, 44(1): 90-94. DOI: 10.11911/syztjs.201601017
WEI Liao, MA Lanrong, ZHU Mintao, WU Jinxia, ZHU Yujie, HAN Feng. Development and Performance Evaluation of Dissolvable Balls for Large Borehole Bridge Plug Fracturing[J]. Petroleum Drilling Techniques, 2016, 44(1): 90-94. DOI: 10.11911/syztjs.201601017
Citation: WEI Liao, MA Lanrong, ZHU Mintao, WU Jinxia, ZHU Yujie, HAN Feng. Development and Performance Evaluation of Dissolvable Balls for Large Borehole Bridge Plug Fracturing[J]. Petroleum Drilling Techniques, 2016, 44(1): 90-94. DOI: 10.11911/syztjs.201601017

大通径桥塞压裂用可溶解球研制及性能评价

基金项目: 

中国石化科技攻关项目"拖动式无限级滑套分段压裂工具研制"(编号:P15006)部分研究内容。

详细信息
    作者简介:

    魏辽(1984-),男,湖南湘乡人,2007年毕业于中国石油大学(华东)机械设计制造及其自动化专业,2010年获北京化工大学机械设计及理论专业硕士学位,工程师,主要从事钻完井井下工具研发工作。E-mailweiliao.sripe@sinopec.com。

  • 中图分类号: TE934+.2

Development and Performance Evaluation of Dissolvable Balls for Large Borehole Bridge Plug Fracturing

  • 摘要: 为解决国内可溶解憋压球无法满足大通径桥塞压裂要求的问题,采用网络结构设计了以镁铝合金为基体并添加Zn、Cu等材料而形成的多元材料,以抗压强度、屈服强度、溶解速率为目标优化了材料中Zn、Cu的加量,研制了与大通径桥塞压裂配套用的大直径、高强度、可溶解合金材料及憋压球。经测试合金材料的抗压强度与屈服强度分别超过了430和330 MPa,直径89.027 mm憋压球承压超过70 MPa,且喷涂防护膜后球体稳定承压达到6 h;93℃条件下在3% KCl溶液中球体溶解90%体积所需时间约为92 h;在胍胶压裂液中的溶解速率虽然比在1%KCl溶液慢,但200 h也能溶解球体90%的体积。这表明,大直径可溶解憋压球能满足大通径桥塞压裂所需的高强度、快速溶解的性能要求。
    Abstract: In China, conventional dissolvable balls are not adaptable to large borehole bridge plug fracturing. To solve this problem, a large diameter and high strength dissolvable ball was developed. It is a multi-component system with magnesium alloy as matrix as well as Zn, Cu and other elements in a net structure. The Zn and Cu content was optimized to improve the system’s compressive strength, yield strength and dissolution rate. Some tests showed that the compressive strength and yield strength of the system were over 430 MPa and 330 MPa, respectively. Pressure resistence capacity was over 70 MPa for the 89.027 mm diameter dissolvable ball made with the system. After coating the ball, pressures were stable for 6 hours, and 90% of the ball dissolved in a 3% KCl solution at 93℃ in about 92 hours. In gel, the ball would dissolve more slowly than in 1% KCl solution, and 90% of the ball was dissolved within 200 hours. We have concluded that the large diameter dissolvable ball can meet the requirement of high strength and rapid dissolution in large borehole bridge plug fracturing.
  • [1]

    SIMONDS R,SWAN T.Development of a large-bore monobore completion system for gas production[R].OTC 11880,2000.

    [2] 曾雨辰,杨保军,王凌冰.涪页HF-1井泵送易钻桥塞分段大型压裂技术[J].石油钻采工艺,2012,34(5):75-79. ZENG Yuchen,YANG Baojun,WANG Lingbing.Large-scale staged fracturing technology with pump-down drillable bridge plug for Well Fuye HF-1[J].Oil Drilling Production Technology,2012,34(5):75-79.
    [3] 路保平.中国石化页岩气工程技术进步及展望[J].石油钻探技术,2013,41(5):1-8. LU Baoping.Sinopec engineering technical advance and its developing tendency in shale gas[J].Petroleum Drilling Techniques,2013,41(5):1-8.
    [4] 贾长贵,路保平,蒋廷学,等.DY2HF深层页岩气水平井分段压裂技术[J].石油钻探技术,2014,42(2):85-90. JIA Changgui,LU Baoping,JIANG Tingxue,et al.Multi-stage horizontal well fracturing technology in deep shale gas Well DY2HF[J].Petroleum Drilling Techniques,2014,42(2):85-90.
    [5] 莫里斯·杜索尔特,约翰·麦克力兰,蒋恕.大规模多级水力压裂技术在页岩油气藏开发中的应用[J].石油钻探技术,2011,39(3):6-16. DUSSEAULT M,MCLENNAN J,JIANG Shu.Massive multi-stage hydraulic fracturing for oil and gas recovery from low mobility reservoirs in China[J].Petroleum Drilling Techniques,2011,39(3):6-16.
    [6]

    AGRAWAL G,SALINAS B J,XU Z.Coated metallic powder and method of making the same:2011/0135953A1[P].2011-06-09.

    [7]

    XU Z,AGRAWAL G,SALINAS B J.Smart nanostructured materials deliver high reliability completion tools for gas shale fracturing[R].SPE 146586,2011.

    [8] 魏辽,肖代红,朱敏涛,等.高强快速分解Mg-xAl合金的组织与性能[J].材料热处理学报,2015,36(3):101-104. WEI Liao,XIAO Daihong,ZHU Mintao,et al.Microstructure and properties of high strength and rapidly decomposed Mg-xAl alloys[J].Transactions of Materials and Heat Treatment,2015,36(3):101-104.
    [9] 秦金立,吴姬昊,崔晓杰,等.裸眼分段压裂投球式滑套球座关键技术研究[J].石油钻探技术,2014,42(5):52-56. QIN Jinli,WU Jihao,CUI Xiaojie,et al.Key technology on ball-activated sleeve for open hole staged fracturing[J].Petroleum Drilling Techniques,2014,42(5):52-56.
    [10] 戴文潮,秦金立,薛占峰,等.一球多簇分段压裂滑套工具技术研究[J].石油机械,2014,42(8):103-106. DAI Wenchao,QIN Jinli,XUE Zhanfeng,et al.Research on one ball-activated multiple sleeves per stage for multistage fracturing[J].China Petroleum Machinery,2014,42(8):103-106.
  • 期刊类型引用(17)

    1. 王旭锋,牛志军,张磊,李翔宇,王纪尧,常泽超,陈旭阳. 超声振动在矿山煤岩致裂中的研究进展与展望. 煤炭科学技术. 2024(01): 232-243 . 百度学术
    2. 杨小聪,黄丹,岳小磊,王想. 非煤矿山机械连续采矿技术研究进展与发展趋势. 有色金属(矿山部分). 2024(06): 1-24 . 百度学术
    3. 向玲,王成东,周政. 硬岩地基基础快速成桩技术的研究进展. 城市建设理论研究(电子版). 2024(32): 117-119 . 百度学术
    4. 黄继庆,胡海,樊思成,刘伟吉,祝效华. 基于扩展PFC2D-GBM模型的单齿切削花岗岩破碎机制. 中国石油大学学报(自然科学版). 2023(02): 81-89 . 百度学术
    5. 刘伟吉,张有建,祝效华,胡海,何灵,陈梦秋. 影响高压电脉冲破岩效率的关键因素分析. 天然气工业. 2023(10): 112-124 . 百度学术
    6. 齐悦,柳贡慧,李军,查春青,田玉栋,李玉梅. 基于单齿多维度冲击破岩机理仿真研究. 石油机械. 2023(12): 1-7 . 百度学术
    7. 王少锋,孙立成,周子龙,吴毓萌,石鑫垒. 非爆破岩理论和技术发展与展望. 中国有色金属学报. 2022(12): 3883-3912 . 百度学术
    8. 赵研,张丛珊,高科,张增增,赵大军,李家晟,吕晓姝,平天才. 超声波辅助PDC切削齿振动破岩仿真分析. 钻探工程. 2021(04): 11-20 . 百度学术
    9. 路宗羽,郑珺升,蒋振新,赵飞. 超声波高频旋冲钻井技术破岩效果试验研究. 石油钻探技术. 2021(02): 20-25 . 本站查看
    10. 李鹏,蔡美峰. 深部金属矿产资源开发面临的挑战及新见解(英文). Transactions of Nonferrous Metals Society of China. 2021(11): 3478-3505 . 百度学术
    11. 聂佳辉,吴志鑫,雷磊,郑靖,周仲荣. TBM的刀具改性与辅助破岩技术研究现状. 机械. 2021(12): 1-10+19 . 百度学术
    12. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    13. 徐梓辰,金衍,腾学清. 液压式应力波辅助破岩工具设计及实验研究. 机床与液压. 2020(19): 1-7 . 百度学术
    14. 刘春生,韩德亮,那洪亮. 碟盘振动切削煤岩机构的动力学模型与幅频特性. 黑龙江科技大学学报. 2020(05): 499-504 . 百度学术
    15. 李玉梅,张涛,苏中,于丽维,刘建明. 复合冲击频率配合特性模拟研究. 石油机械. 2019(09): 30-36 . 百度学术
    16. 索忠伟. ?228.6mm射流冲击器研制及硬地层提速试验. 石油钻探技术. 2019(04): 54-58 . 本站查看
    17. 李玉梅,于丽维,张涛,苏中,刘建明. 复合冲击钻井立体破岩特性模拟研究. 系统仿真学报. 2019(11): 2471-2476 . 百度学术

    其他类型引用(23)

计量
  • 文章访问数:  2886
  • HTML全文浏览量:  113
  • PDF下载量:  2980
  • 被引次数: 40
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-12-29
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回