随钻声波测井声系短节的研制与测试

朱祖扬, 陆黄生, 张卫, 吴海燕, 吴金平

朱祖扬, 陆黄生, 张卫, 吴海燕, 吴金平. 随钻声波测井声系短节的研制与测试[J]. 石油钻探技术, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014
引用本文: 朱祖扬, 陆黄生, 张卫, 吴海燕, 吴金平. 随钻声波测井声系短节的研制与测试[J]. 石油钻探技术, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014
Zhu Zuyang, Lu Huangsheng, Zhang Wei, Wu Haiyan, Wu Jinping. Development and Testing of Acoustic Nipples While Drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014
Citation: Zhu Zuyang, Lu Huangsheng, Zhang Wei, Wu Haiyan, Wu Jinping. Development and Testing of Acoustic Nipples While Drilling[J]. Petroleum Drilling Techniques, 2015, 43(5): 83-87. DOI: 10.11911/syztjs.201505014

随钻声波测井声系短节的研制与测试

详细信息
    作者简介:

    朱祖扬(1981-),男,江西南昌人,2004年毕业于云南大学地球物理专业,2007获中国地震局地震预测研究所固体地球物理专业硕士学位,2011年获中国科学院声学所声学专业博士学位,工程师,主要从事声波测井技术和随钻仪器研发工作。

  • 中图分类号: TE927

Development and Testing of Acoustic Nipples While Drilling

  • 摘要: 为满足钻井过程中对地层压力实时监测和地质力学计算的需要,开展了随钻声波测量关键技术研究,研制了随钻声波测井声系短节。该短节内外径分别为57.2 mm和171.0 mm,采用"一发两收"的工作模式,发射声系安装一个单极子发射换能器,接收声系安装2个接收器,每个接收器由4个宽频接收换能器组成。发射声系和接收声系采取分离式设计,声波发射器和接收器之间的距离可以调整,接收器之间的距离固定为200 mm。利用声波测量试验装置测试发现,发射声系的声波激发频率为12.92 kHz,声场指向性图近似于一个椭圆,接收声系的8个接收换能器的谐振频率为30.84~33.53 kHz,平均谐振频率为32.23 kHz;利用该短节和随钻声波测量电路获得了试验套管井的声波全波列波形,计算得到套管的声速为5 100 m/s。随钻声波测井声系短节的成功研制,为国内随钻声波测井仪器的开发提供了新的技术思路。
    Abstract: In order to satisfy the requirement for real-time formation pressure monitoring and geomechanical parameters calculation, an acoustic nipple while drilling was developed based on the analysis of key technologies of acoustic measurement while drilling. The internal and external diameters of the nipple are 57.2 mm and 171.0 mm,respectively. It has one emitter and two receivers in operation mode. The emitting acoustic system is equipped with one monopolar sub-emitting transducer, and the receiving acoustic system is equipped with two receivers with four broad-band receiving transducers for each. The emitting and receiving acoustic systems consist of two separated parts. The spacing between the emitter and the receiver can be changed, but it is fixed at 200 mm among receivers. Based on the test of acoustic measurement,acoustic excitation frequency of emitting acoustic system is 12.92 kHz and its directivity pattern is similar to an ellipse. In the receiving acoustic system, the resonance frequency of eight receiving transducers is in the range of 30.84-33.53 kHz, averaging 32.23 kHz. The full wave form of the cased hole in the test was recorded by using the nipple and the acoustic measurement circuit while drilling, and the calculated acoustic velocity was 5 100 m/s. The successful development of the acoustic nipple while drilling will provide significant technical data for the development in China of acoustic logging devices while drilling.
  • [1] 唐晓明,郑传汉.定量测井声学[M].北京:石油工业出版社,2004:158-161. Tang Xiaoming,Zheng Chuanhan.Quantitative borehole acoustic methods[M].Beijing:Petroleum Industry Press,2004:158-161.
    [2] 王秀明,张海澜,何晓,等.声波测井中的物理问题[J].物理,2011,40(2):79-87. Wang Xiuming,Zhang Hailan,He Xiao,et al.Physical problems in acoustic logging[J].Physics, 2011,40(2):79-87.
    [3] 王华,陶果,张绪健.随钻声波测井研究进展[J].测井技术,2009,33(3):197-203. Wang Hua,Tao Guo,Zhang Xujian.Review on the development of sonic logging while drilling[J].Well Logging Technology,2009,33(3):197-203.
    [4] 乔文孝,鞠晓东,车小花,等.声波测井技术研究进展[J].测井技术,2011,35(1):14-19. Qiao Wenxiao,Ju Xiaodong,Che Xiaohua,et al.Progress in acoustic well logging technology[J].Well Logging Technology,2011,35(1):14-19.
    [5]

    Degrange J M,Hawthorn A,Nakajima H,et al.Sonic while drilling:multipole acoustic tools for multiple answers[R].SPE 128162,2010.

    [6]

    Tang X M,Wang T,Patterson D.Multipole acoustic logging-while-drilling[R].SEG-2002-0364,2012.

    [7]

    Tang Xiaoming,Dubinsky V,Wang T, et al.Shear-velocity measurement in the logging-while-drilling environment:modeling and field evaluations[J].Petrophysics,2003,44(2):79-90.

    [8] 乔文孝,鞠晓东,车小花,等.从换能器技术的变化看声波测井技术的发展[J].物理,2011,40(2):99-106. Qiao Wenxiao,Ju Xiaodong,Che Xiaohua,et al.Transducer and acoustic well logging technology[J].Physics, 2011, 40(2):99-106.
    [9] 肖红兵,鞠晓东,卢俊强.随钻声波测井仪控制和数据处理系统设计[J].测井技术,2009,33(6):555-558. Xiao Hongbing,Ju Xiaodong,Lu Junqiang.Design on control and data processing system of acoustic logging while drilling[J].Well Logging Technology, 2009, 33(6):555-558.
    [10] 肖红兵,鞠晓东,杨锦舟.随钻声波测井仪高效电源设计[J].声学技术,2009,28(5):620-623. Xiao Hongbing,Ju Xiaodong,Yang Jinzhou.Design of high efficiency power supply for acoustic logging while drilling tool[J].Technical Acoustics,2009,28(5):620-623.
    [11] 卢俊强,鞠晓东,乔文孝,等.方位声波测井仪电子系统设计[J].测井技术,2011,35(3):284-287. Lu Junqiang,Ju Xiaodong,Qiao Wenxiao,et al.Electronic system design of azimuthally acoustic bond tool[J].Well Logging Technology,2011,35(3):284-287.
    [12]

    Wu Jinping, Qiao Wenxiao, Che Xiaohua, et al.Experimental study on the radiation characteristics of downhole acoustic phased combined arc array transmitter[J].Geophysics,2013, 78(1):D1-D9.

    [13] 杨锦舟.声波测井偶极子发射换能器性能的实验研究[J].声学技术,2008,27(1):141-144. Yang Jinzhou.Experimental investigation on properties of dipole transmitters for acoustic well logging[J].Technical Acoustics,2008,27(1):141-144.
    [14] 吴金平,乔文孝,车小花,等.声波测井压电振子温度性能一致性实验研究[J].测井技术,2012,36(2):109-113. Wu Jinping,Qiao Wenxiao,Che Xiaohua,et al.Experimental investigation on temperature performance consistency of piezoelectric benders used in acoustic well logging[J].Well Logging Technology,2012,36(2):109-113.
  • 期刊类型引用(22)

    1. 姜志生,徐慧,何岩峰,刘楠楠,陈尚平,史幸,魏文基,陈晟. 多元热流体开发稠油出砂机理及规律(英文). 常州大学学报(自然科学版). 2024(02): 48-60 . 百度学术
    2. 徐珂,刘敬寿,张辉,张冠杰,张滨鑫,王海应,张禹,来姝君,钱子维,强剑力. 复杂构造区全层系地质力学建模及其地质与工程应用. 地学前缘. 2024(05): 195-208 . 百度学术
    3. 董长银,李经纬,周博,黄亮,刘亚宾,李强,黄有艺. 出砂气藏井底防砂筛管冲蚀动态模拟试验及冲蚀损坏工况评价方法. 安全与环境学报. 2023(06): 1859-1867 . 百度学术
    4. 韩超,黄凡,职文栋,但顺华,万文胜,王琛. 基于核磁共振技术的疏松砂岩油藏微粒运移伤害机理. 科学技术与工程. 2023(20): 8621-8633 . 百度学术
    5. 李敬彬,程康,胡静茹,黄中伟,王海柱. 水力喷射径向水平井回灌增注特性可视化试验研究. 流体机械. 2023(11): 1-8 . 百度学术
    6. 鹿晓涵,侯满福,黄国辉,王永军,杨爱英,胡围焱. BQ地区东营组疏松砂岩试油测试压差确定方法. 油气井测试. 2023(06): 8-12 . 百度学术
    7. 赵衍彬. 利用数字岩心方法评价稠油开采方式对渗透率的影响研究. 精细石油化工. 2022(01): 45-49 . 百度学术
    8. Chang-Yin Dong,Bo Zhou,Fan-Sheng Huang,Lei Zhang,Yi-Zhong Zhao,Yang Song,Jun-Yu Deng. Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs. Petroleum Science. 2022(01): 279-295 . 必应学术
    9. 孙帅帅,赵成龙,王瑞祥,张启龙,石磊. 渤海XX油田防砂控水完井设计研究及案例分析. 科学技术创新. 2022(12): 177-180 . 百度学术
    10. 董长银,陈琛,周博,隋义勇,王兴,王金忠. 油气藏型储气库出砂机理及防砂技术现状与发展趋势展望. 石油钻采工艺. 2022(01): 43-55 . 百度学术
    11. 张启龙,韩耀图,龚宁,李进,陈卓. 基于LS-SVM的渤海油田防砂设计优化方法研究. 石油机械. 2021(01): 110-117 . 百度学术
    12. 林海,张晓诚,谢涛,庹海洋,刘海龙,孙金. 基于断层稳定性的疏松砂岩临界注水压力研究. 重庆科技学院学报(自然科学版). 2021(02): 29-33+49 . 百度学术
    13. 孙珂,陈清华,徐珂,孙建芳. 油水比例变化对岩石力学性质的影响及出砂分析——以金湖凹陷秦营断块区阜宁组储层为例. 中国矿业大学学报. 2021(05): 909-922 . 百度学术
    14. 董长银,闫切海,周博,王宇宾,邓君宇,宋洋,王力智. 弱胶结储层微观出砂形态与出砂机理可视化实验模拟研究. 石油钻采工艺. 2020(02): 227-235 . 百度学术
    15. 徐珂,田军,杨海军,张辉,王志民,袁芳,王海应. 深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例. 中国矿业大学学报. 2020(04): 708-720 . 百度学术
    16. 李进,许杰,龚宁,韩耀图,高斌. 渤海油田疏松砂岩储层动态出砂预测. 西南石油大学学报(自然科学版). 2019(01): 119-128 . 百度学术
    17. 徐珂,戴俊生,商琳,房璐,冯建伟,杜赫. 南堡凹陷现今地应力特征及影响因素. 中国矿业大学学报. 2019(03): 570-583 . 百度学术
    18. 董长银,闫切海,李彦龙,徐鸿志,周玉刚,尚校森,陈强,宋洋. 天然气水合物储层颗粒级尺度微观出砂数值模拟. 中国石油大学学报(自然科学版). 2019(06): 77-87 . 百度学术
    19. REN Shaoran,LIU Yanmin,GONG Zhiwu,YUAN Yujie,YU Lu,WANG Yanyong,XU Yan,DENG Junyu. Numerical Simulation of Water and Sand Blowouts When Penetrating Through Shallow Water Flow Formations in Deep Water Drilling. Journal of Ocean University of China. 2018(01): 17-24 . 必应学术
    20. 刘浩伽,李彦龙,刘昌岭,董长银,吴能友,孙建业. 水合物分解区地层砂粒启动运移临界流速计算模型. 海洋地质与第四纪地质. 2017(05): 166-173 . 百度学术
    21. 董长银,周崇,钟奕昕,王鹏,崔明月,曾思睿,尚校森. 中等强度砂岩饱水力学参数变化试验及动态出砂规律. 中国石油大学学报(自然科学版). 2017(06): 108-116 . 百度学术
    22. 陈欢庆,石成方,王珏,姚尧. 稠油热采储层精细油藏描述研究进展. 断块油气田. 2016(05): 549-553 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  2960
  • HTML全文浏览量:  79
  • PDF下载量:  3775
  • 被引次数: 37
出版历程
  • 收稿日期:  2015-05-15
  • 修回日期:  2015-08-26
  • 刊出日期:  1899-12-31

目录

    /

    返回文章
    返回