Fracture Identification Method for Marine-Continental Transitional Clastic Rocks Based on the Array Acoustic Logging
-
摘要: 针对海陆过渡相致密碎屑岩地层裂缝测井识别难度大的问题,提出结合Gassmann方程、自适应基质矿物及骨架模量提取方法及DEM理论模型,利用阵列声波测井资料对海陆过渡相碎屑岩地层单井裂缝发育段进行定量识别的方法。研究结果显示,提取的碎屑岩地层岩石基质矿物体积模量Ko分布在13~58 GPa,岩石体积模量Ks和干岩石骨架体积模量Kd略小于Ko;地层岩石基质矿物剪切模量μo分布在5~18 GPa,岩石剪切模量μs略小于μo;利用自适应方法可对地层横波时差进行有效预测,相对误差为3.5%;将采用自适应方法提取的模量参数代入DEM理论模型,可实现对地层裂缝的预测,该方法的识别效果明显好于常规测井、裂缝参数法、多因素概率判别法及R/S法等常规裂缝识别方法。研究表明,提出的新识别方法其计算结果与实际值的吻合度高,裂缝识别结果可靠。Abstract: It is much more difficult to identify fractures in marine-continental transitional facies tight clastic rocks from well logging,so a study was proposed to carry out quantitative identification on single-well fracture development sections in marine-continental transitional facies clastic formations by using array sonic logging data, combined with the Gassmann equation, adaptive matrix mineral and skeleton modulus extraction method, and DEM theoretical model. It is shown that the extracted Ko(matrix mineral bulk modulus of clastics)ranges from 13 to 58 GPa, which is slightly higher than Ks (bulk modulus)and Kd (dry rock skeleton bulk modulus), and μo(matrix mineral shear modulus) ranges from 5 to 18 GPa, which is slightly higher than μs (shear modulus). Shear wave time difference can be predicted effectively with relative error 3.5% from adaptive method. Fractures can be predicted by introducing modulus parameters extracted by the adaptive method into the DEM theoretical model, and its coincidence rate is apparently superior to that of the conventional logging method, the fracture parameter method,the multi-parameters probability discriminance method and the R/S method. In conclusion, the newly proposed fracture identification method is reliable, with its calculation results highly coincident with practical value.
-
-
[1] 李建忠,郭彬程,郑民,等.中国致密砂岩气主要类型、地质特征与资源潜力[J].天然气地球科学,2012,23(4):607-615. Li Jianzhong,Guo Bincheng,Zheng Min,et al.Main types,geological features and resource potential of tight sandstone gas in China[J].Natural Gas Geoscience,2012,23(4):607-615. [2] 童晓光,郭彬程,李建忠,等.中美致密砂岩气成藏分布异同点比较研究与意义[J].中国工程科学,2012,14(6):9-15,30. Tong Xiaoguang,Guo Bincheng,Li Jianzhong,et al.Comparison study on accumulation distribution of tight sandstone gas between China and the United States and its significance[J].Engineering Science,2012,14(6):9-15,30. [3] 丁文龙,尹帅,王兴华,等.致密砂岩气储层裂缝评价方法与表征[J].地学前缘,2015,22(4):173-187. Ding Wenlong,Yin Shuai,Wang Xinghua,et al.Assessment method and characterization of tight sandstone gas reservoir fractures[J].Earth Science Frontiers,2015,22(4):173-187. [4] Olson J E,Laubach S E,Lander R H.Natural fracture characterization in tight gas sandstones:integrating mechanics and diagenesis[J].AAPG Bulletin,2009,93(11):1535-1549.
[5] Nelson R A.Geological analysis of naturally fractured reservoirs[M].Houston :Gulf Publishing Company,1985:8-26.
[6] 曾义金.页岩气开发的地质与工程一体化技术[J].石油钻探技术,2014,42(1):1-6. Zeng Yijin.Integration technology of geology engineering for shale gas development[J].Petroleum Drilling Techniques,2014,42(1):1-6. [7] Zeng Lianbo,Li Xiangyang.Fractures in sandstone reservoirs with ultra-low permeability:a case study of the Upper Triassic Yanchang Formation in the Ordos Basin,China[J].AAPG Bulletin,2009,93(4):461-477.
[8] 赵立强,刘飞,王佩珊,等.复杂水力裂缝网络延伸规律研究进展[J].石油与天然气地质,2014,35(4):562-569. Zhao Liqiang,Liu Fei,Wang Peishan,et al.A review of creation and propagation of complex hydraulic fracture network[J].Oil Gas Geology,2014,35(4):562-569. [9] 尹帅,单钰铭,周文,等.破裂准则方程在深层岩石力学强度响应中的应用[J].地球物理学进展,2014,29(6):2942-2949. Yin Shuai,Shan Yuming,Zhou Wen,et al.Application of failure criterion equation in deep rock’s mechanical strength response[J].Progress in Geophysics,2014,29(6):2942-2949. [10] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展,2014,29(3):1231-1242. Sun Wei,Li Yufeng,Fu Jianwei,et al.Review of fracture identification with well logs and seismic data[J].Progress in Geophysics,2014,29(3):1231-1242. [11] Murray G H.Quantitative fracture study-Sanish Pool McKenzie country,North Dakota[J].AAPG Bulletin,1968,52(1):57-65.
[12] 尹帅,单钰铭,周文,等.Hoek-Brown准则在致密砂岩弹性参数测井解释中的应用[J].石油钻探技术,2015,43(1):88-95. Yin Shuai,Shan Yuming,Zhou Wen,et al.Application of Hoek-Brown criterion for tight sandstone elastic parameters in log interpretation[J].Petroleum Drilling Techniques,2015,43(1):88-95. [13] 丁文龙,漆立新,吕海涛,等.利用FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J].现代地质,2009, 23(5):852-859. Ding Wenlong,Qi Lixin,Lv Haitao,et al.Analysis of the lower-middle ordovician reservoir tectonic stress field using FMI data in the south of Tahe Oilfield[J].Geoscience,2009,23(5):852-859. [14] Ding Wenlong,Fan Tailiang,Yu Bingsong,et al.Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong Area of Tarim Basin,Northwest China[J].Journal of Petroleum Science and Engineering,2012,86/87(5):62-70.
[15] Jahanbakhshi R,Keshavarzi R.Intelligent prediction of wellbore stability in oil and gas wells:an artificial neural network approach[J].American Rock Mechanics Association,2012,46:1-9.
[16] 秦勇,梁建设,申建,等.沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J].煤炭学报,2014,39(8):1559-1565. Qin Yong,Liang Jianshe,Shen Jian,et al.Gas logging shows and gas reservoir types in tight sandstones and shales from Southern Qinshui Basin[J].Journal of China Coal Society,2014,39(8):1559-1565. [17] 丁文龙,梅永贵,尹帅,等.沁水盆地煤系地层孔-裂隙特征测井反演[J].煤炭科学技术,2015,43(2):53-57. Ding Wenlong,Mei Yonggui,Yin Shuai,et al.Logging inversion on pore-crack features of coal measure strata in Qinshui Basin[J].Coal Science and Technology,2015,43(2):53-57. [18] 李月,林玉祥,于腾飞.沁水盆地构造演化及其对游离气藏的控制作用[J].桂林理工大学学报,2011,31(4):481-487. Li Yue,Lin Yuxiang,Yu Tengfei.Tectonic evolution of Qinshui Basin and free gas reservoir control[J].Journal of Guilin University of Technology,2011,31(4):481-487. [19] Su X B,Lin X Y,Zhao M J,et al.The upper Paleozoic coalbed methane system in the Qinshui Basin,China[J].AAPG Bulletin,2005,89(1):81-100.
[20] 丁文龙,许长春,久凯,等.泥页岩裂缝研究进展[J].地球科学进展,2011,26(2):135-144. Ding Wenlong,Xu Changchun,Jiu Kai,et al.The research progress of shale fractures[J].Advances in Earth Science,2011,26(2):135-144. [21] Bogdonov A A.The intensity of cleavage as related to the thickness of beds[J].Soviet Geology,1947,16:102-104.
[22] Robert G K,Xu Shiyu.An approximation for the Xu-White Velocity[J].Geophysics,2002,67(5):1406-1414.
[23] 林凯,贺振华,熊晓军,等.基于基质矿物模量自适应提取横波速度反演方法[J].石油地球物理勘探,2013,48(2):262-267. Lin Kai,He Zhenhua,Xiong Xiaojun,et al.S-wave velocity inversion based on adaptive extraction of matrix mineral modulus[J].Oil Geophysical Prospecting,2013,48(2):262-267. [24] 雍世和,张超谟.测井数据处理与综合解释[M].东营:石油大学出版社,1996:235-240. Yong Shihe,Zhang Chaomo.Logging data processing and comprehensive interpretation[M].Dongying:Petroleum University Press,1996:235-240. [25] He Xilei,He Zhenhua,Wang Ruiliang,et al.Calculations of rock matrix modulus based on a linear regression relation[J].Applied Geophysics,2011,8(3):155-162.
[26] Li Hongbing,Zhang Jiajia.Elastic moduli of dry rocks containing spheroidal pores based on differential effective medium theory[J].Journal of Applied Geophysics,2011,75(4):671-678.
[27] 董宁,霍志周,孙赞东,等.泥页岩岩石物理建模研究[J].地球物理学报,2014,57(6):1990-1998. Dong Ning,Huo Zhizhou,Sun Zandong,et al.An investigation of a new rock physics model for shale[J].Chinese Journal of Geophysics,2014,57(6):1990-1998. [28] 李宏兵,张佳佳,姚逢昌.岩石的等效孔隙纵横比反演及其应用[J].地球物理学报,2013,56(2):608-615. Li Hongbing,Zhang Jiajia,Yao Fengchang.Inversion of effective pore aspect ratios for porous rocks and its applications[J].Chinese Journal of Geophysics,2013,56(2):608-615. [29] Hudson J A.Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophysical Journal Royal Astronomical Society,1981,64(1):133-149.
[30] Berryman J G,Berge P A.Critique of two explicit schemes for estimating elastic properties of multiphase composites[J].Mechanics of Materials,1996,22(2):149-164.
[31] Li Hongbing,Zhang Jiajia.Analytical approximations of bulk and shear moduli for dry rock based on the differential effective medium theory[J].Geophysical Prospecting,2012,60(2):281-292.
[32] Pang J,North C P.Fractals and their applicability in geological wireline log analysis[J].Journal of Petroleum Geology,1996,19(3):339-349.
[33] 郭科,龚灏.多元统计方法及其应用[M].成都:电子科技大学出版社,2003:65-72. Guo Ke,Gong Hao.Multivariate statistical method and application[M].Chengdu:University of Electronic Science Technology of China Press,2003:65-72. [34] 路保平,鲍洪志.岩石力学参数求取方法进展[J].石油钻探技术,2005,33(5):44-47. Lu Baoping,Bao Hongzhi.Advances in calculation methods for rock mechanics parameters[J].Petroleum Drilling Techniques,2005,33(5):44-47. [35] 陆黄生.测井技术在石油工程中的应用分析与发展思考[J].石油钻探技术,2012,40(6):1-7. Lu Huangsheng.Application and development analysis of well logging information in petroleum engineering[J].Petroleum Drilling Techniques,2012,40(6):1-7. -
期刊类型引用(11)
1. 史配铭,李刚,刘振. SN0144i-XX小井眼测井仪器套捞一体打捞技术研究及应用. 石油工业技术监督. 2025(02): 1-6 . 百度学术
2. 杨明,刘巨保,王田玉,丁宇奇,岳欠杯,杨宝. 井口无支撑段连续油管极限拉压载荷分析. 东北石油大学学报. 2023(01): 116-126+12 . 百度学术
3. 邸德家,毛军,庞伟,张同义. 涪陵页岩水平井生产测井仪器遇卡处理及分析. 油气井测试. 2022(05): 54-57 . 百度学术
4. 陆应辉,唐凯,张柟乔,任国辉,张清彬,李奔驰,李妍僖. 水平井桥塞射孔联作管串解卡力计算模型及应用. 长江大学学报(自然科学版). 2021(01): 79-86 . 百度学术
5. 焦金龙. XS14-P2水平井落井电缆打捞技术. 油气井测试. 2021(02): 34-38 . 百度学术
6. 张德龙,吴洪涛,贺宇迪,赵伟峰,刘佳欣. 连续油管内穿电缆测井工艺在水平井中的应用. 化学工程与装备. 2021(05): 110-111 . 百度学术
7. 王栋,赖学明,唐庆,周俊杰. 沧东凹陷页岩油水平井不压井作业技术. 石油钻探技术. 2021(04): 150-154 . 本站查看
8. 唐凯,陈锋,陆应辉,任国辉,李奔驰,杨登波. 水平井桥射联作电缆及其弱点的受力分析. 测井技术. 2021(04): 445-450 . 百度学术
9. 陆应辉,唐凯,任国辉,聂华富,杨登波. 水平井泵送分簇射孔落鱼打捞工艺及应用. 长江大学学报(自然科学版). 2019(05): 23-28+6 . 百度学术
10. 徐学利,王涛,张世虎,李希,张广利,董会,李霄,康国强,白自龙. 接触载荷对CT80连续油管摩擦磨损性能的影响. 材料保护. 2019(11): 8-12 . 百度学术
11. 艾白布·阿不力米提,庞德新,王一全,郭新维,杨文新,焦文夫. 连续油管打捞连续油管关键工具研究与应用. 石油钻探技术. 2019(06): 89-95 . 本站查看
其他类型引用(2)
计量
- 文章访问数: 3213
- HTML全文浏览量: 96
- PDF下载量: 3542
- 被引次数: 13