Development and Performance Evaluation of the High Temperature Resistant Polymer Fluid Loss Agent AAS
-
摘要: 深井超深井井底温度高,水泥浆滤失控制难度大。为解决这一问题,以 2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和苯乙烯磺酸钠(SSS)为原料,以偶氮二异丁脒盐酸盐为引发剂,通过优化AMPS、AM和SSS三者的比例,合成了三元共聚耐高温降滤失剂AAS。利用红外光谱、核磁共振氢谱表征、热重和差热分析等方法评价了AAS的稳定性,并开展了水泥浆高温滤失性能评价。结果表明,AMPS、AM和SSS质量比为20:5:1时,AAS的分解温度为350℃左右;AAS加量为1.6%时,在180℃条件下水泥浆API滤失量可以控制在150 mL以下,150℃条件下滤失量为56 mL。研究表明,降滤失剂AAS能够降低水泥浆在高温下的滤失量,对水泥浆流变性、强度和稠化时间无明显影响,能满足高温固井对水泥浆的要求。Abstract: With high bottom hole temperatures in deep and ultra deep wells, there are difficulties in mud filtration control. The study on high temperature resistant polymer fluid loss agent was done in which 2-acrylamido-2-methyl propane sulfonic acid (AMPS), acrylamide (AM) and sodium styrene sulfonate (SSS) were used as raw materials and azo diisobutyl amidine hydrochloride as the initiator. The proportion of AMPS, AM and SSS was optimized to obtain terpolymers through chemical reaction. Then the synthetic products were extracted, dried and crushed with acetone to produce ternary copolymerization fluid loss agent, AAS. High-temperature cement slurry filtration performances were evaluated by using infrared spectroscopy, nuclear magnetic resonance hydrogen spectrum characterization, thermogravimetric and differential thermal analysis to determine the stability of these synthetic products. Research results showed that the synthetic copolymer decomposition temperature was 350℃ when the mass ratio of AMPS,AM and SSS was 20:5:1; API cement slurry filtration could be controlled under 150 mL at 180℃ when the dosage of copolymer was increased by 1.6%. At 150℃, the filtration was 56 mL. The research showed that the ternary copolymer fluid loss agent AAS could significantly improve the filtration control ability of the cement slurry at high temperatures. In addition, the ternary copolymer fluid had no obvious effect on rheological properties, strength and thickening time of the cement slurry, so that it could meet the technical requirements for high-temperature cementing slurry.
-
Keywords:
- terpolymer /
- fluid loss additive /
- high temperature resistance /
- co-polymerization
-
塔河油田碳酸盐岩缝洞型油藏与普通砂岩油藏不同,储集空间类型多样、形态差异较大,非均质性极强[1]。该油田开发初期主要依靠天然能量开采,随着开发不断进行,天然能量出现不足,采出能力开始下降,注水开发是初期解决该问题的最有效方法,但进入注水开发后期,储层经过长时间注水后,油水界面升高,驱油效果逐渐变差[2-6]。为此,进行了碳酸盐岩缝洞型油藏气水复合驱技术研究。该技术是在长时间注水后,改为注入氮气,注入的氮气会聚集在储集体高部位的阁楼体内[5-8],将阁楼体内的剩余油油置换出来,但是由于缺乏横向驱动力,剩余油可能会大量富集在注采井网的井间;于是,在当前注气井网条件下,需再次注水增加横向水驱动力,提高井间剩余油的动用程度,从而改善碳酸盐岩缝洞型油藏的开发效果。该技术在塔河油田 4 区 7 个注采井组进行了现场应用,并获得良好的增产效果。
1. 碳酸盐岩缝洞型油藏特征
塔河油田奥陶系碳酸盐岩缝洞型油藏发育于新疆塔里木盆地沙雅隆起阿克库勒凸起的西南部,油藏埋深5 400.00~7 600.00 m,储集空间主要为溶蚀孔洞、大型洞穴和溶蚀裂缝,储集体主要为裂缝–溶洞型和裂缝–孔洞型,部分区域奥陶系一间房组地层发育微裂缝[9]。其中洞穴和孔洞的储集性能最好,裂缝既是储集空间,又是流体流动的主要通道,流体流动以管流为主[10-11]。各类岩溶体储层空间展布具有极强的非均质性,油气水运移规律复杂。
2. 气水复合驱油开发模式研究
2.1 气水复合驱油机理
在利用多属性地震资料描述储集体形态特征的基础上,通过刻蚀玻璃的方法建立了一套20 mm×30 mm的缝洞储集体物理模拟模型,该模型设计为裂缝–溶洞型储集体,孔隙度为18%。利用该模型进行气水复合驱油物理模拟试验,先注入试验用油,待模型空腔充满试验用油,再注水进行水驱,待出口已经完全出水后再注入氮气,注入一定量氮气后再次注水。试验过程中观察不同阶段模型内流体的运移情况,结果见图1。从图1可以看出,该模型在充满试验用油经水驱后,顶部的7、8号储集体内仍存在大量剩余油(见图1(a));对其进行气驱,7、8号储集体内的剩余油被驱替到水驱通道上(见图1(b)),再次进行水驱,注入水将水驱通道上的剩余油从出口端驱替出(见图1(c))。由此可知缝洞型油藏气水复合驱油机理:氮气作为纵向驱动力,向下驱替缝洞体顶部剩余油,将剩余油驱替至水驱通道上,注入水作为横向驱动力,形成二次水驱。
2.2 气水复合驱开发方式
在认识气水复合驱油机理的基础上,利用地震资料刻画井洞关系,根据生产动态识别注采井之间的连通通道,明确剩余油分布,针对不同剩余油分布特征构建了4种井组模式(见图2):对于水驱通道在含油高度内的“阁楼油”,构建了注入井先注气、后注水的常规协同模式,为单方向一注一采的模式;对于水驱失效的多井区域的“阁楼油”,构建了注入井注气、周边邻井注水的栅状协同模式;对于出现气窜的井组,构建了换向协同模式;对于失效或未见效并且水驱通道在含油高度外的“阁楼油”,构建了注入井注气后先调流封堵水通道、再注水的调剖协同模式。
2.3 气水复合驱井网设计
主要依托岩溶背景及储层展布特征,根据基础井组模式有针对性地构建气水复合立体井网,如图3所示。对于风化壳岩溶,其展布面积广,多向连通条件好,构建面状注采井网;对于断溶体、古河道储层展布方向性强,连通特征表现为带状连通或线性连通,分别建立带状井网和线状井网[5]。
纵向上,根据井间通道路径长短、构造高低、规模大小等因素配置井网。对于有利驱替路径为陡构造、短路径、规模较小的山梁、断溶体或暗河等,如果采用低注高采井网很容易发生气窜,而采用高注低采井网则可以发挥作用集中、见效快和控制气窜的优势;有利驱替路径为缓构造、长路径,阁楼储集体靠近注入井,可以采用低注高采井网以提高驱替效率。
总体而言,需要根据通道的规模确定采用高注低采井网还是低注高采井网:短路径、小通道采用高注低采井网,以气驱为主,水驱为辅,以预防水窜;长路径、大通道采用低注高采井网,以水驱为主,气驱为辅,以提高气驱效率。实践中,2种纵向井网模式对不同规模的通道均有其优势。
2.4 气水复合驱参数设计
根据历史注水水驱效果确定水驱可动用空间,对比累计注气体积与水驱可动用空间判断通道内剩余油的再次充满程度,根据充满程度确定水驱历史等效阶段,用等效阶段的历史注水强度指导气水复合驱参数设计。
气水复合驱的作用过程分为2部分:1)垂向上,注入气将“阁楼油”驱至水驱可动用空间;2)横向上,注入水进入水驱可动用空间将油驱至受效井。注入气不断垂向驱油,关键是如何形成有效的横向水驱。根据历史注水水驱效果确定水驱可动用空间,通过对比累计注气体积与水驱可动用空间判断通道内剩余油的再次充满程度,根据剩余油充满程度确定水驱历史等效阶段,再根据等效阶段历史注水强度设计气水复合驱参数。理想驱替模型中,注采比应为1∶1,注入水前缘突破前的注水量等于增油量,注水过程中纵向上大量分水,少部分水形成了有效横向驱替。水驱结束时生产井总增油量即为有效横向水量,即水驱可驱扫空间总量。具体计算步骤(见图4)如下:
1)确定水驱可动用空间体积。对于具有完整的水驱见效至失效阶段的注采井组,认为井间水驱可动用空间体积即水驱采油量的地下体积。
2)确定水驱可动用空间的充满程度。首先根据累计注入气量的地下体积与气驱采油量的地下体积的差,求出水驱通道中剩余油的体积;然后计算水驱可动空间的充满程度,即水驱通道剩余油体积与水驱可动用空间体积之比。
3)对应注水水驱等效阶段。利用等效原理,把任意气驱阶段对应的充满程度在水驱阶段找到对应相等充满程度的时间节点。
4)类比当时注水强度。通道充满程度相同时,注水受效日注水量为Qt。
5)确定目前的注水强度。设计目前的注水量QM≥Qt,即气水复合阶段要提供足够的横向驱动力驱动注入气顶替至水驱可动用空间内的剩余油,此时不需要考虑注水强度过大再次发生水窜的风险,因为单元注气阶段不同于注水水驱阶段,“阁楼油”可反复进入水驱通道。
3. 现场应用
气水复合驱技术在塔河油田4区7个注采井组进行了现场应用,均获得良好的增产效果,井组产油量平均提高86.0 t,累计增产油量1.3×104 t,且增油效果不断改善。下面以TK428CH–TK408井组为例,介绍气水复合驱技术的应用情况。
3.1 TK428CH–TK408井组概况
TK428CH井是注水兼注气井,TK408井是采油井,井组平面特征是沿山梁发育的风化壳岩溶,纵向特征为平缓山梁,注气路径长,“阁楼油”靠近注入井,采用低注高采井网(如图5所示)。
3.2 注入参数设计
1)确定水驱可动用空间。水驱可动用空间等于前期受效增油量,该井组经历了完整的水驱阶段,水驱通道内的原油被驱替得较为彻底,因此该井组水驱增油量的地下体积等于水驱可动用空间的体积,通过计算该井组水驱可动用空间体积为5.47×104 m3。
2)判断水驱通道剩余油富集程度。该井累计注气5.70×104 m3,累计增油3.81×104 m3,通道内剩余油1.89×104 m3,水驱可动用空间充满程度为34.0%。
3)类比相同充满程度的水驱强度。当水驱阶段通道内剩余油充满程度为34.0%时,水驱处于效果变差阶段,此阶段注水量为300 m3/d,因此目前该井组合理注水量至少需要达到300 m3/d,连续注水。
4)现场注采调整及效果。调整前TK428CH井累计注气2.8×104 m3见效,后期效果出现变差趋势,计算水驱通道剩余油充满程度34.0%,水驱通道内仍富集大量剩余油,需要加强水驱动用水驱通道内的剩余油,于是TK428CH井恢复注水,并且将注水量提高至300 m3/d,TK408井生产效果改善,日增油量稳定在30 t。
4. 结论与建议
1)针对水驱和气驱无法有效动用塔河油田缝洞型碳酸盐岩油藏高部位剩余油的问题,根据其储层特征及剩余油分布特征,研究形成了气驱替油、水驱提供横向驱动力的气水复合驱技术。
2)现场应用表明,气水复合驱技术可以实现塔河油田缝洞型碳酸盐岩油藏高部位剩余油的有效动用,改善开发效果。
3)目前气水复合驱参数的设计是基于历史水驱效果进行的,还处于半定量阶段,建议进一步研究,通过地质建模和数值模拟实现定量计算。
-
[1] 张德润,张旭.固井液设计及应用:下册[M].北京:石油工业出版社,2000:52-60. Zhang Derun,Zhang Xu.The cementing fluid design and application:part Ⅱ[M].Beijing:Petroleum Industry Press,2000:52-60. [2] Baret J F.Why cement fluid loss additives are necessary[R].SPE 17630,1988.
[3] 刘景丽,郝惠军,李秀妹,等.油井水泥降失水剂接枝改性聚乙烯醇的研究[J].钻井液与完井液,2014,31(4):79-80. Liu Jingli,Hao Huijun,Li Xiumei,et al.Study on graft modified PVA-A cement slurry fluid loss reducer[J].Drilling Fluid Completion Fluid,2014,31(4):79-80. [4] 赵田红,王忠信,谷秋志,等.阴离子型AM/AMPS共聚物的合成及性能评价[J].精细石油化工进展,2006,7(12):21-23. Zhao Tianhong,Wang Zhongxin,Gu Qiuzhi,et al.Synthesis and evaluation of anionic AM/AMPS copolymer[J].Dadvances in Fine Petrochemicals,2006,7(12):21-23. [5] Fink J K.Oil field chemicals[C].Burlington:Gulf Professional Publishing,2003:Chapter 10.
[6] Reddy B Raghava,Riley Wendell D.High temperature viscosifying and fluid loss controlling additives for well cements,well cement compositions and methods:US,6770604[P].2004-08-20.
[7] Bair Keith A,Chen Fu,Melbouci Mohand,et al.Polymeric fluid loss additives and method of use thereof:US,6590050[P].2003-07-08.
[8] Susann Wiechers,Gudrun Schmidt-Naake.Copolymerization of 2-Acrylamido-2-methl-1-propanesulfonic acid and 1-Vinylimdazole in inverse miniemulsion[J].Macromolecular Reaction Engineering,2008,2(2):126-134.
[9] 李晓岚,国安平,李韶利,等.抗高温油井水泥降失水剂的合成及性能评价[J].油田化学,2013,30(2):166-167. Li Xiaolan,Guo Anping,Li Shaoli,et al.Synthesis and performance evaluation of high temperature resistant fluid loss reducer for oil well cement[J].Oilfield Chemistry,2013,30(2):166-167. [10] 邓清月,高婷,李爽.油井水泥降失水剂的合成及性能评价[J].精细石油化工进展,2011,12(9):9-11. Deng Qingyue,Gao Ting,Li Shuang.Synthesis and evaluation of fluid loss additive for oil well cement[J].Dadvances in Fine Petrochemicals,2011,12(9):9-11. [11] 胶凝材料编写组.胶凝材料学[M].北京:中国建筑工业出版社,1980:91-92. Editorial Committee of Cementing Material Science.Cementing material science[M].Beijing:China Architecture Building Press,1980:91-92.
计量
- 文章访问数: 3121
- HTML全文浏览量: 94
- PDF下载量: 3817