Effects of Reservoir Rock/Barrier and Interfacial Properties on Hydraulic Fracture Height Containment
-
摘要: 为评价储层和隔层岩石及层间界面性质对压裂缝高的影响,基于ABAQUS有限元计算平台,采用Cohesive单元研究了岩石弹性模量、地应力和抗拉强度等因素对压裂缝高的影响,并对各因素的影响程度进行了比较.通过数值模拟得出,弹性模量大的隔层在裂缝穿过界面时对其并无明显限制作用,反而会有利于隔层中缝高的增大;最小水平主应力大和抗拉强度高的隔层对缝高的扩展有显著限制作用;当储隔层界面的抗剪强度高出某一临界值时,压裂缝高急剧增大,小于该临界值时界面会发生滑移,裂缝被完全限制在储层内;在特定地层条件下,裂缝在储层中为垂直缝,扩展至界面处后开始沿界面扩展,形成T形缝.研究表明:弹性模量大的隔层对于控制压裂缝高不利;最小水平应力大和抗拉强度高的隔层有利于控制缝高,并且地应力的影响程度约为抗拉强度的1.6倍;界面抗剪强度越小,储/隔层界面就越容易发生滑移,越有利于控制压裂缝高.Abstract: In order to estimate effects of reservoir rock/barrier and interfacial properties on hydraulic fracture height control,studies were done to analyze and compare the effects of rock elastic modulus,in situ stress,and tensile strength on fracture height containment ability by Cohesive element based on the ABAQUS computing platform.Through numerical simulation,it was deduced that a barrier with high elastic modulus was not impeded when the fracture grows through the bonding interface,but was had an impact on the fracture height in the barrier.A barrier with minimum in situ stress and high tensile strength could significantly hinder the fracture height.The fracture height increased quickly when the interfacial shear strength of reservoir rock/barrier was beyond a critical value,and the fracture height was confined fully by the reservoir when the interfacial shear strength was lower than the critical value.Under proper conditions,the fracture propagated vertically in the reservoir and horizontally the interface,and thus develop into a T-shaped fracture.The research results showed that barrier with a high elastic modulus adversely affected fracture height containment.A barrier with minimum in situ stress and high tensile strength could strongly inhibit the fracture height propagation.The impact of in situ stress was about 1.6 times of tensile strength.The lower the shear strength of the interface,the easier for the reservoir rock/barrier to slip,which helped to contain the fracture height.
-
Keywords:
- rock /
- interface /
- hydraulic fracturing /
- fracture height /
- finite element method
-
-
[1] Liu He,Wang Han,Wu Heng’an,et al.Effect of reservoir porosity and clay content on hydraulic fracture height containment.IPTC 16415,2013.
[2] Gu Hongren,Siebrits E.Effect of formation modulus contrast on hydraulic fracture height containment[R].SPE 103822,2006.
[3] Smith M B,Bale A B,Britt L K,et al.Layered modulus effects on fracture propagation,proppant placement,and fracture modeling[R].SPE 71654,2001.
[4] Daneshy A A.Factors controlling the vertical growth of hydraulic fractures[R].SPE 118789,2009.
[5] Daneshy A A.Hydraulic fracture propagation in layered formations[J].SPE Journal,1978,18(1):33-41.
[6] Daneshy A A.Hydraulic fracture propagation in the presence of planes of weakness[R].SPE 4852,1974.
[7] Barree R D,Winterfeld P H.Effects of shear planes and interfacial slippage on fracture growth and treating pressures[R].SPE 48926,1998.
[8] Anderson G.Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J].SPE Journal,1981,21(1):21-29.
[9] 黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,8(5):62-74. Huang Rongzun.The initiation and propagation of hydraulic fracture[J].Petroleum Exploration and Development,1981,8 (5):62-74. [10] 周文高,胡永全,赵金洲,等.控制压裂缝高技术研究及影响因素分析[J].断块油气田,2006,13(4):70-72. Zhou Wengao,Hu Yongquan,Zhao Jinzhou,et al.Research on fracture height containment technology and analysis of influence factors[J].Fault-Block Oil Gas Field,2006,13(4):70-72. [11] Fisher M K,Warpinski N R.Hydraulic-fracture-height growth:real data[J].SPE Production Operations,2012,27(1):8-19.
[12] 陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报:自然科学版,1997,21(4):23-26,32. Chen Zhixi,Chen Mian,Huang Rongzun,et al.Vertical growth of hydraulic fracture in layered formations[J].Journal of the University of Petroleum,China:Edition of Natural Science,1997,21(4):23-26,32. [13] 王瀚,刘合,张劲,等.水力裂缝的缝高控制参数影响数值模拟研究[J].中国科学技术大学学报,2011,41(9):820-825. Wang Han,Liu He,Zhang Jin,et al.Numerical simulation of hydraulic fracture height control with different parameters[J].Journal of University of Science and Technology of China,2011,41(9):820-825. [14] Tomar V,Zhai Jun,Zhou Min.Bounds for element size in a variable stiffness cohesive finite element model[J].International Journal for Numerical Methods in Engineering,2004,61(11):1894-1920.
[15] Camanho P P,Dávila C G.Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.NASA/TM-2002-211737,2002.
[16] Turon A,Camanho P P,Costa J,et al.A damage model for the simulation of delamination in advanced composites under variable-mode loading[J].Mechanics of Materials,2006,38(11):1072-1089.
[17] Economides M J,Nolte K G,Ahmed U.Reservoir stimulation[M].Chichester:Wiley,2000:5.15-5.16.
[18] Hagoort J,Weatherill B,Settari A.Modeling the propagation of waterflood-induced hydraulic fractures[J].SPE Journal,1980,20(4):293-303.
[19] Peirce A,Detournay E.An implicit level set method for modeling hydraulically driven fractures[J].Computer Methods in Applied Mechanics and Engineering,2008,197(33-40):2858-2885.
[20] Fjar E,Holt R M,Raaen A M,et al.Petroleum related rock mechanics[M].2nd ed.Amsterdam:Elsevier,2008:60-64.
[21] 贾喜荣.岩石力学与岩层控制[M].徐州:中国矿业大学出版社,2010:111-114. Jia Xirong.Rock mechanics and strata control[M].Xuzhou:China University of Mining and Technology Press,2010:111-114. -
期刊类型引用(1)
1. 肖功勋. 复杂层状地层的随钻核磁共振测井响应模拟分析. 中国石油和化工标准与质量. 2021(05): 103-105 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 2783
- HTML全文浏览量: 76
- PDF下载量: 3778
- 被引次数: 1