Analysis of the Relative Position Uncertainty in the Intersecting Process of U-Shaped Horizontal Wells
-
摘要: 为了更好地使用旋转磁场测距导向系统(RMRS)来引导两井的精确连通,进行了U形水平井连通过程中的相对位置不确定性分析.根据RMRS在连通中的引导过程,将相对位置不确定性分为由RMRS引起的测点相对正钻井井底的位置不确定性和由测斜仪引起的连通点相对测点的位置不确定性.采用井位不确定模型,得到由RMRS和测斜仪引起的相对位置不确定性的协方差矩阵.通过坐标转换,得到同一坐标系下的总协方差矩阵,并给出由总协方差矩阵确定的误差椭球(圆).从实例计算可以看出,连通点与正钻井井底相距101.84 m时,误差椭球的半轴长度为3.75,1.90和2.66 m;随着钻进的进行,相距10.00 m时,误差椭球的半轴长度为0.25,0.56和0.07 m.研究结果表明,由RMRS测得的相对位置误差随钻头的钻进不再积累而是逐渐减小,同时进行相对位置不确定性分析有利于实现两井的连通,并有效地指导RMRS的使用.Abstract: To effectively use RMRS to guide the accurate intersection of two U-shaped horizontal wells,the relative position uncertainty in the intersecting process was analyzed.According to the guiding process of RMRS for well intersections,the relative position uncertainty was divided into two parts:the relative position uncertainty between the bottomhole being drilled and the measure point by RMRS,and the relative position uncertainty between the intersection point and the measure point by inclinometer.The covariance matrix of relative position uncertainty caused by RMRS and the inclinometer was obtained by using a borehole position uncertainty model.Through the conversion of coordinates,the total covariance matrix was obtained in the same coordinate system,and then the error ellipsoid and error ellipse were determined on the basis of the total covariance matrix.From the example it could be determined that when the distance from bottom-hole drilled to the intersection point was 101.84 m,the lengths of semi-axes were 3.75,1.90 and 2.66 m respectively.With the drilling operation,when the distance from bottomhole to intersection point was 10.00 m,the lengths of semi-axes were 0.25,0.56 and 0.07 m.The result indicated that the relative position error measured by RMRS was no longer cumulative but decreased gradually.The analysis of relative position uncertainty being made simultaneously would help the realization of the intersection of two wells,and guide the use of RMRS effectively.
-
Keywords:
- U-shaped wells /
- uncertainty /
- intersection /
- RMRS /
- covariance matrix /
- error ellipsoid /
- error ellipse
-
塔里木盆地库车坳陷凝析油气资源丰富,主要有博孜、大北、迪那以及吐孜洛克等凝析气田,其中大北凝析气田原油含蜡量差异较大,含蜡量最高为22%,最低仅为3%[1]。随着温度降低,含蜡地层流体中的蜡分子析出并沉积在井筒内壁,堵塞流动通道,使流通直径减小,导致凝析气井产量降低或停产[2–6]。因此,亟待进一步明确含蜡量对凝析气藏相态特征的影响规律。目前国内外对凝析气藏相态特征的研究大多集中在析蜡点、蜡沉积、含蜡高低成因、清蜡防蜡方法以及结蜡预测模型等方面[7–10]。例如,杨永才等人[11–12]分析了高含蜡凝析油或轻质油的分布特征,揭示了含蜡凝析气藏的形成机理;胡永乐等人[13]利用高压相态试验装置研究了高含蜡凝析气的相态特征,发现在不同压力条件下高含蜡凝析气表现出的颜色随相态变化而变化;钟太贤等人[14–17]研究了含蜡凝析气藏的相图变化,从试验和理论的角度分析了析蜡机理。余华杰等人[18]分析了高含CO2凝析气的相态特征,发现CO2有助于抑制凝析油的反凝析作用和增强凝析油的反蒸发。由于含蜡量不同凝析气藏的相态特征不同,导致井筒中的结蜡量也不同,然而目前尚无含蜡量对凝析气藏相态特征影响的相关研究。为此,笔者利用大北凝析气田1101井的油气样品,建立了不同含蜡量地层流体样品的制作方法,研究了大北地区凝析气田不同含蜡量地层流体的组分及其含量、露点压力、偏差系数和反凝析液饱和度等相态特征,以期为制定凝析气藏合理的开发方式和提高凝析油的采收率提供指导[19]。
1. 不同含蜡量地层流体样品的制作方法
笔者用大北凝析气田1101井地面凝析油与分离器分离的气体,按生产气油比复配获得地层流体,取样时分离器温度为44 ℃,压力为14.787 MPa,现场生产气油比为25 421.62 m3/m3。地面凝析油与分离气组分的分析结果见表1和表2。由表1可知,凝析油中C11以上组分占74.048 9%。由表2可知,分离气中甲烷占94.568 4%。
表 1 凝析油的组分及含量Table 1. Components and content of condensate oil组分 摩尔分数,% 组分 摩尔分数,% 组分 摩尔分数,% C2 0.0003 C12 8.2540 C24 1.7147 C3 0.0016 C13 6.7210 C25 1.5276 iC4 0.0056 C14 8.5290 C26 1.1862 nC4 0.0144 C15 6.2654 C27 1.1130 iC5 0.0669 C16 5.6442 C28 0.8046 nC5 0.0704 C17 4.8326 C29 0.6320 C6 0.6271 C18 4.3167 C30 0.4659 C7 3.9753 C19 3.9792 C31 0.3154 C8 7.2326 C20 3.2100 C32 0.4599 C9 7.2648 C21 2.6767 C33 0.2379 C10 6.6918 C22 2.3024 C34 0.2357 C11 6.5018 C23 2.1230 表 2 分离气的组分及含量Table 2. Components and content for separator gas组分 摩尔分数,% 组分 摩尔分数,% CO2 0.2207 iC4 0.1266 N2 0.6197 nC4 0.1549 C1 94.5684 iC5 0.0689 C2 3.5162 nC5 0.0539 C3 0.6375 C6 0.0331 为了研究含蜡量对凝析气藏地层流体相态特征的影响,需要保证在不改变生产气油比的条件下使凝析油中的含蜡量减少或增加,对于在分离器处取得的凝析油样品,其方法是通过加入该井本身的轻质油或高含蜡凝析油来减少或增加配样凝析油的含蜡量。
通过蒸馏去除凝析油中的轻质油,获得高含蜡凝析油。将高蜡凝析油与分离器处取得的凝析油按照一定比例混合,参照标准《原油中蜡、胶质、沥青质含量的测定》(SY/T 7550—2012)[20],测试混合凝析油的含蜡量,制备了含蜡量分别为7.04%,12.08%,17.79%和27.77%的凝析油样品。根据现场生产气油比,参照标准《油气藏流体物性分析方法》(GB/T 26981—2020)[21],将不同含蜡量的凝析油样品与分离气样品进行复配,获得不同含蜡量的地层流体样品。
2. 不同含蜡量地层流体的相态特征
通过地层流体的相态试验分析含蜡量对地层流体相态特征的影响。参照标准《油气藏流体物性分析方法》(GB/T 26981—2020)[21]进行地层流体相态试验,相态试验主要包括闪蒸试验、恒质膨胀试验和定容衰竭试验。
2.1 不同含蜡量地层流体的闪蒸组分特征
利用闪蒸分离器和气相色谱仪进行不同含蜡量地层流体样品的单次闪蒸试验,闪蒸气、闪蒸油以及地层流体的组分分析结果见表3-表5。
表 3 不同含蜡量凝析气藏地层流体闪蒸气组分分析结果Table 3. Components and content of fluid flashed gas with different wax contents in condensate gas reservoirs含蜡量,% 不同组分的摩尔分数,% CO2 N2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 7.04 0.2314 0.6664 94.4076 3.5832 0.6503 0.133 0 0.1636 0.0741 0.0559 0.0345 12.08 0.2227 0.675 0 94.3394 3.6553 0.6591 0.1297 0.1573 0.0678 0.0517 0.0421 17.79 0.2096 0.5407 94.9195 3.3263 0.6004 0.1188 0.1443 0.0628 0.0479 0.0298 27.77 0.2207 0.6522 94.4707 3.5828 0.6428 0.1265 0.1534 0.0661 0.0505 0.0342 表 5 不同含蜡量下凝析气藏地层流体组分分析结果Table 5. Composition analsis results of formation fluids in condensate gas reservoit with different wax contents组分 不同组分的摩尔分数,% 7.04%① 12.08%① 17.79%① 27.77%① CO2 0.230 6 0.221 9 0.208 9 0.220 0 N2 0.663 8 0.672 6 0.538 8 0.650 0 C1 94.050 8 94.004 9 94.593 0 94.151 5 C2 3.569 8 3.642 5 3.315 2 3.571 0 C3 0.647 9 0.656 8 0.598 4 0.640 7 iC4 0.132 5 0.129 3 0.118 5 0.126 1 nC4 0.163 1 0.156 8 0.143 9 0.153 0 iC5 0.073 9 0.067 7 0.062 7 0.066 0 nC5 0.055 8 0.051 6 0.047 8 0.050 5 C6 0.035 1 0.042 8 0.030 5 0.036 0 C7 0.002 9 0.004 4 0.004 1 0.005 3 C8 0.009 6 0.012 4 0.010 2 0.009 6 C9 0.018 7 0.017 6 0.014 6 0.013 3 C10 0.029 2 0.023 0 0.019 2 0.019 1 C11+ 0.316 2 0.295 6 0.294 2 0.287 8 ρ(C11+)/(kg·L−1) 0.839 0 0.847 7 0.850 6 0.854 0 M(C11+)/(g·mol−1) 210.99 227.22 232.99 239.75 凝析油密度/(kg·L−1) 0.8137 0.820 1 0.823 7 0.831 0 闪蒸气油比/(m3·m−3) 26 248.14 26 478.81 26512.73 26 591.47 注:凝析油密度是在20 ℃下测得的。 从表3可以看出,不同含蜡量地层流体闪蒸气组分及其含量变化不大,这是由于该井凝析油中的蜡主要由C11以上的重组分组成,而闪蒸气主要是由C6以下的轻组分组成。
从表4可以看出,当地层流体中的含蜡量分别为7.04%,12.08%,17.79%和27.77%时,对应闪蒸油中C11以上重组分的摩尔分数分别为
89.8018 %,90.4715 %,92.0240 %和92.1012 %。可以看出,含蜡量越高,闪蒸油中重组分的含量越高。表 4 不同含蜡量凝析气藏地层流体闪蒸油的组分分析结果Table 4. Components and content of fluid flashed oil with different wax contents in condensate gas reservoirs组分 不同组分的摩尔分数,% 7.04%① 12.08%① 17.79%① 27.77%① C2 0.007 2 0.008 0 0.013 4 0.008 8 C3 0.003 2 0.004 8 0.005 3 0.003 2 iC4 0.004 1 0.004 7 0.006 2 0.005 6 nC4 0.009 2 0.008 7 0.010 8 0.008 8 iC5 0.011 2 0.010 8 0.012 1 0.011 9 nC5 0.012 1 0.010 8 0.011 6 0.014 8 C6 0.080 9 0.106 7 0.101 1 0.218 3 C7 0.377 6 0.564 0 0.522 1 0.679 2 C8 1.385 5 1.785 3 1.471 9 1.377 6 C9 3.043 6 2.875 7 2.365 2 2.153 7 C10 5.263 7 4.149 0 3.456 3 3.416 9 C11+ 89.801 8 90.471 5 92.024 0 92.101 2 注:①为含蜡量,下同。 从表5可以看出,当地层流体中的含蜡量分别为7.04%,12.08%,17.79%和27.77%时,地层流体中C11以上重组分的分子质量分别为210.99,227.22,232.99和239.75 g/mol,凝析油密度分别为0.813 7,0.820 1,0.823 7和0.831 0 kg/L,闪蒸气油比为26 248.14,26 478.81,26 512.73和26 591.47 m3/m3。由此可见,含蜡量越高,地层流体中重组分的质量越高,相应凝析油的密度越高。通过单次闪蒸试验明确了不同含蜡量下地层流体中各组分的变化规律,为进一步明确高含蜡凝析气藏相变特征提供了支持。
2.2 不同含蜡量地层流体的露点压力特征
大北
1101 井地层温度为116.78 ℃,地层压力为90.207 MPa。采用逐级降压逼近法,利用HPVT−150型高压全温段PVT仪测试不同含蜡量地层流体样品的在地层温度下的露点压力,结果如图1所示。图2为不同含蜡量地层流体样品的相图。由图1和图2可知,含蜡量分别为7.04%,12.08%,17.79%和27.77%的地层流体在地层温度下的露点压力分别为52.21,53.06,55.17和57.50 MPa,含蜡量越高,露点压力越高,露点线右移,这是由于地层流体含蜡量越高,其中所含重组分越多,压力降低重组分优先析出,重组分具有更高的露点压力,导致地层流体露点压力升高,使地层流体在更高的压力下发生相变,这预示在井筒中随着温度压力降低,凝析油中的重组分优先析出,析蜡点升高,导致井筒结蜡位置加深,这一认识为现场PVT取样深度和清蜡深度设计提供了依据。采用线性回归方法拟合图1中露点压力(pd )与含蜡量(ωw)的关系,结果为:pd=0.264 2ωw + 50.213 R2 = 0.987 7 (1) 由式(1)可知,含蜡量每升高1%,露点压力约升高
0.2642 MPa,可利用式(1)预测不同含蜡量地层流体在地层温度下的露点压力。2.3 不同含蜡量地层流体的恒质膨胀特征
利用HPVT−150型高压全温段PVT仪进行不同含蜡量地层流体样品地层温度下的恒质膨胀试验(CCE试验),结果如图3-图6所示。从图3可以看出:在压力低于30 MPa时,随着压力升高,不同含蜡量地层流体的相对体积快速降低;在压力高于30 MPa时,随着压力升高,不同含蜡量地层流体相对体积的下降趋势逐渐放缓。从图4可以看出,随着压力升高,不同含蜡量地层流体的偏差系数升高,偏差系数与压力呈现线性关系。从图5可以看出,随着压力升高,不同含蜡量地层流体的体积系数降低。从图4和图5还可以看出,不同含蜡量地层流体的相对体积、偏差系数以及体积系数相近,这是由于地层流体中的蜡主要是C11以上重组分的一部分,其在地层流体中的占比极低,因此含蜡量对地层流体相对体积、偏差系数以及体积系数的影响很小,试验结果进一步证明了不同含蜡量地层流体的膨胀能力接近。从图6可以看出,高含蜡量地层流体反凝析液的饱和度更高,这是由于地层流体中的含蜡量越高,所含的重组分越多,同时由于重组分具有更高的露点压力,随着压力降低更容易从凝析气中析出,使反凝析液饱和度升高。这预示在井筒中随着温度压力降低,凝析油中的重组分优先析出,析蜡点升高,凝析液含量增加,地层流体中的蜡优先在井筒更深位置析出,在建立结蜡预测模型中应该考虑这一因素的影响。
2.4 定容衰竭特征
利用HPVT−150型高压全温段PVT仪进行不同含蜡量地层流体样品地层温度下的定容衰竭试验(CVD试验),结果如图7-图9所示。从图7可以看出,凝析气藏地层流体中的含蜡量越高,反凝析液的饱和度越高,凝析气藏储层中反凝析液的饱和度总体小于1.29%,定容衰竭与恒质膨胀试验均得到了相似的结果,这证明了试验的准确性。从图8可以看出,含蜡量对采出地层流体中平衡气相偏差系数的影响较小,这是由于地层流体中的平衡气主要由C6以下的轻组分组成,因此含蜡量对其偏差系数的影响较小。从图9可以看出,在废弃压力(10 MPa)下,凝析油的采出程度随含蜡量升高而降低,其主要原因是高含蜡量凝析气中的重组分更多地反凝析出来,加剧了地层反凝析油的损失,导致凝析油采出程度降低。
3. 结 论
1)用大北凝析气田1101井地面凝析油与分离器分离的气体,开展了含蜡量对相态特征影响的试验研究。通过闪蒸试验发现,含蜡量越高,闪蒸油组分中C11以上重组分含量越高,闪蒸气组分变化较小,同时地层流体组分中重组分含量越高,导致闪蒸得到凝析油的密度越高。
2)分析不同含蜡量地层流体的露点压力发现,露点压力与含蜡量呈线性关系,含蜡量升高1%,对应露点压力升高0.264 2 MPa,其原因是高含蜡量地层流体的重组分多,而重组分优先析出导致露点压力升高。
3)含蜡量对地层流体膨胀能力的影响较小,含蜡量升高,地层流体重组分占比增大,反凝析作用增强,导致凝析油采出程度降低,这是由于高含蜡地层流体中重组分的反凝析作用使地层反凝析油的损失增大。
4)凝析气井生产过程中,随着井筒温度压力从井底至井口降低,高含蜡流体中的重组分优先析出,这预示着井筒结蜡位置随地层流体含蜡量升高而加深,并且地层流体中的蜡优先在井筒更深位置析出,导致结蜡位置至井口井筒流体中的蜡含量降低。可以通过含蜡量对地层流体露点压力和反凝析液饱和度的影响规律确定井下取样深度、清蜡深度以及完善结蜡预测模型。
-
[1] 高德利,吴晓东,李根生,等.复杂结构井优化设计与钻完井控制技术[M].东营: 中国石油大学出版社,2011:1-14. Gao Deli,Wu Xiaodong,Li Gensheng,et al.Optimized design and control techniques for drilling completion of complex-structure wells[M].Dongying:China University of Petroleum Press,2011:1-14. [2] 李子丰,戴江.对接水平井及其井间导航轨道控制技术[J].天然气工业,2008,28(2):70-72. Li Zifeng,Dai Jiang.Controlling technique on navigating path of horizontal butt well and crosswell[J].Natural Gas Industry,2008,28(2):70-72. [3] 杨力.和顺地区煤层气远端水平连通井钻井技术[J].石油钻探技术,2010,38(3):40-43. Yang Li.Remote-end horizontal communication drilling technology for coal bed methane in Heshun Block[J].Petroleum Drilling Techniques,2010,38(3):40-43. [4] 向军文,胡汉月,刘志强.土耳其天然碱矿30对对接井钻井工程[J].中国井矿盐,2007,38(5):25-28. Xiang Junwen,Hu Hanyue,Liu Zhiqiang.Well drilling in 30 pairs of butted wells in a trona mine in Turkey[J].China Well and Rock Salt,2007,38(5):25-28. [5] 孙连坡,刘新华,李彦.胜利油田第一口跨断块阶梯水平井钻井实践[J].断块油气田,2012,19(1):117-119. Sun Lianpo,Liu Xinhua,Li Yan.Drilling practice of the first stepped horizontal well drilled in two fault blocks in Shengli Oilfield[J].Fault-Block Oil Gas Field,2012,19(1):117-119. [6] Al-Khodhori S M,Holweg P,Alriyami H.Connector conductor wells technology in brunei shell petroleum-achieving high profitability through multiwell bores and downhole connections[R].IADC/SPE 111441,2008.
[7] Poloni R,Sassi G,Valente P,et al.An innovative approach to heat heavy oil formations by means of two horizontally interconnected wells[R].SPE 133129,2010.
[8] Grills T L.Magnetic ranging technologies for drilling steam assisted gravity drainage well pairs and unique well geometries-a comparison of technologies[][R].SPE 79005,2002.
[9] 刁斌斌,高德利,吴志永.双水平井导向钻井磁测距计算方法[J].中国石油大学学报:自然科学版,2012,35(6):71-75. Diao Binbin,Gao Deli,Wu Zhiyong.Magnet ranging calculation method of twin parallel horizontal wells steerable drilling[J].Journal of China University of Petroleum:Edition of Natural Science,2012,35(6):71-75. [10] 宗艳波.旋转磁场定向测距随钻测量仪的研制与试验[J].石油钻探技术,2012,40(6):110-114. Zong Yanbo.Development and field test of rotating magnetic MWD range finder[J].Petroleum Drilling Techniques,2012,40(6):110-114. [11] Lee D,Brandao F.U-tube wells-connecting horizontal wells end to end case study:installation and well construction of the world’s first U-Tube well[R].SPE/IADC 92685,2005.
[12] Vandal B,Grills T,Wilson G.A comprehensive comparison between the magnetic guidance tool and the rotating magnet ranging service[R].PETSOC -2004-176,2004.
[13] 董胜伟,申瑞臣,乔磊,等.煤层气水平井连通工具测量误差分析[J].石油钻采工艺,2013,35(2):56-58. Dong Shengwei,Shen Ruichen,Qiao Lei,et al.Measuring errors analysis in communicating operation for CBM horizontal wells[J].Oil Drilling Production Technology,2013,35(2):56-58. [14] Williamson H S.Accuracy prediction for directional MWD[R].SPE 56702,1999.
[15] Williamson H S.Accuracy prediction for directional measurement while drilling[J].SPE Drilling Completion,2000,15(4):221-233.
[16] Wolff C J M,de Wardt J P.Borehole position uncertainty-analysis of measuring methods and derivation of systematic error model[J].Journal of Petroleum Technology,1981,33(12):2338-2350.
[17] 柳贡慧,董本京,高德利.误差椭球 (圆) 及井眼交碰概率分析[J].钻采工艺,2000,23(3):5-12. Liu Gonghui,Dong Benjing,Gao Deli.Probability analysis of error ellipsoid (ellipse) and hole intersection[J].Drilling Production Technology,2000,23(3):5-12.
计量
- 文章访问数: 2812
- HTML全文浏览量: 87
- PDF下载量: 3306