Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus

Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad

Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad. Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066
Citation: Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad. Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066
HichamFerroudji, AhmedHadjadj, TitusN Ofei, AhmedHaddad. 偏心环空中幂率流体层流流动特性数值模拟研究[J]. 石油钻探技术, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066
引用本文: HichamFerroudji, AhmedHadjadj, TitusN Ofei, AhmedHaddad. 偏心环空中幂率流体层流流动特性数值模拟研究[J]. 石油钻探技术, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066

Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus

More Information
    Author Bio:

    Hicham Ferroudji(1991—), Male, Arris (Algeria), he holds a BSc (2013) and MSc degrees (2015) in Mechanical Engineering of petrochemical plants from Hydrocarbons and Chemistry Faculty, Boumerdes University, Algeria. He is currently a Ph. D candidate at Hydrocarbons and Chemistry Faculty, Boumerdes University, Algeria. His research study includes CFD modelling of multiphase flow in annular section in which the drill string makes orbital and whirling motion, including cuttings transport, and drilling engineering. E-mail: hichamf32@gmail.com

偏心环空中幂率流体层流流动特性数值模拟研究

详细信息
  • 中图分类号: TE21

  • Abstract:

    Drilling fluid mostly behaves as non-Newtonian fluid and it can be modelled by the Herschel-Bulkley model, which is also called yield power-law (YPL). This model provides accurate results for a wide range of shear rate. In the present paper, a numerical study of the Herschel-Bulkley fluid through the eccentric annulus (E=0.5) was performed for the laminar flow regime using finite volume method (FVM). Effect of the inner pipe rotation and rheology parameters (yield stress τ0, consistency index K and behavior index n) on the axial and tangential velocity profiles and pressure drop gradient were studied. Results showed that increasing the inner pipe rotation from 100 to 400 rpm induces an increase of 120 % of the maximum axial velocity. Low value of the behavior index (n=0.2) causes the appearance of the secondary flow in the wide region of the annulus. The variation of the inner pipe rotation and rheological parameters of the Herschel-Bulkley fluid have a negligible effect on the tangential velocity profile in the wide region of the eccentric annulus. Furthermore, It was observed that the increase of the inner pipe rotation from 0 rpm to 400 rpm causes a decrease of 10% of pressure drop gradient of yield power-law fluid for all eccentric annulus (E=0.2, E=0.4, E=0.6 and E=0.8).

    摘要:

    Herschel-Bulkley模型(即屈服幂率模型)可用于研究非牛顿流体的流动特性,并能在大范围剪切速率条件下得到准确的预测结果。为此,采用有限体积方法(FVM),研究了内部管柱旋转及流变参数(屈服应力τ0、稠度系数K和流性指数n)对偏心环空(E=0.5)中Herschel-Bulkley流体层流区域的轴向、切向速度剖面与压降梯度的影响。研究结果表明,内部管柱转速从100 r/min增加至400 r/min时,会引起最大轴向速度增加,增幅为120%;较低的流性指数(n=0.2)会引起偏心环空宽区域出现二次流;内部管柱转速及流变参数的变化对偏心环空宽区域切向速度剖面有不良影响;内部管柱转速从0增加至400 r/min时,会引起不同偏心环空(E=0.2, 0.4, 0.6和0.8)内幂率流体压降梯度降低,降低幅度为10%。

  • Figure  1.   Computational grid and domain flow of the eccentric annulus

    Figure  2.   Mesh independence study

    Figure  3.   Comparison of numerical and experimental velocity profiles

    Figure  4.   Axial and tangential velocity profiles for various inner pipe rotations (τ0=32 Pa, K=16 Pa·s n, n=0.32)

    Figure  5.   Axial and tangential velocity profiles for various yield stresses (ω = 131.84 r/min, K=16 Pa·s n, n=0.43)

    Figure  6.   Axial and tangential velocity profiles for various consistency indexes (ω = 131.84 r/min, τ0=32 Pa, n=0.43)

    Figure  7.   Axial and tangential velocity profiles for various behavior indexes (ω = 131.84 r/min, τ0=32 Pa, K=16 Pa·s n)

    Figure  8.   Effect of the pipe rotation on pressure drop gradient for different eccentricities (Re = 12.05, τ0 = 32 Pa, K = 16 Pa·s n, n = 0.43)

    Figure  9.   Effect of the yield stress on pressure drop gradient for different eccentricities (Re = 12.05~14.10, ω = 200 r/min, K = 16 Pa·s n, n = 0.43).

    Figure  10.   Effect of the flow consistency index on pressure drop gradient for different eccentricities (Re = 12.05~30.66, ω = 200 r/min, τ0 = 32 Pa, n = 0.43).

    Figure  11.   Effect of the flow behavior index on pressure drop gradient for different eccentricities (Re = 1.48~37.54, ω = 200 r/min, τ0 = 32 Pa, K = 16 Pa·s n).

  • [1]

    WHITTAKER A. Theory and application of drilling fluid hydraulics[M]. Boston: International Human Resources Development Corporation, 1985.

    [2]

    COUSSOT P, PIAU J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175–184. doi: 10.1007/BF00437302

    [3]

    NOUAR C, DESAUBRY C, ZENAIDI H. Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder[J]. European Journal of Mechanics-B/Fluids, 1998, 17(6): 875–900. doi: 10.1016/S0997-7546(99)80018-1

    [4]

    HUSSAIN Q E, SHARIF M A R. Numerical modeling of helical flow of viscoplastic fluids in eccentric annuli[J]. AIChE Journal, 2000, 46(10): 1937–1946. doi: 10.1002/aic.690461006

    [5]

    VIEIRA NETO J L, MARTINS A L, ATAÍDE C H, et al. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli[J]. Brazilian Journal of Chemical Engineering, 2014, 31(4): 829–838. doi: 10.1590/0104-6632.20140314s00002871

    [6]

    OFEI T N, IRAWAN S, PAO W. Flow profile distribution in narrow annuli using modified yield power-law fluid model[C]//AWANG M, NEGASH B M, MD AKHIR N A, et al. ICIPEG 2014. Singapore: Springer, 2015: 209–217.

    [7]

    AHMED R M, MISKA S Z. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[R]. SPE 112604, 2008.

    [8]

    HANSEN S A, STERRI N. Drill pipe rotation effects on frictional pressure losses in slim annuli[R]. SPE 30488, 1995.

    [9]

    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[R]. SPE 141518, 2010.

    [10]

    BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. Manhattan: John Wiley & Sons Inc., 2002.

    [11]

    MADLENER K, FREY B, CIEZKI H K. Generalized reynolds number for non-Newtonian fluids[J]. Progress in Propulsion Physics, 2009, 1: 237–250.

    [12]

    CENGEL Y A. Fluid mechanics[M]. India: Tata McGraw-Hill Education, 2010.

  • 期刊类型引用(4)

    1. 尹帅,赵军辉,刘平,沈志成. 裂缝性储层天然缝与水力缝开启条件及扩展规律研究. 石油钻探技术. 2024(03): 98-105 . 本站查看
    2. 刘善勇,尹彪,楼一珊,张艳. 粗糙裂缝内支撑剂运移与展布规律数值模拟. 石油钻探技术. 2024(04): 104-109 . 本站查看
    3. 刘顺,刘建斌,陈鑫,周志祥,黄凯,杜恒毅,张亚龙,王宗振. 耐温自降解暂憋剂性能影响因素实验. 特种油气藏. 2024(06): 145-150 . 百度学术
    4. 石明星,李沁,邱思杨,雷雲,敬伟. 压裂时天然裂缝对储层温度分布的影响. 钻井液与完井液. 2023(04): 540-550 . 百度学术

    其他类型引用(0)

图(11)
计量
  • 文章访问数:  962
  • HTML全文浏览量:  336
  • PDF下载量:  79
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-05-19
  • 修回日期:  2020-05-06
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-06-30

目录

    /

    返回文章
    返回