Citation: | ZHANG Weiguo, JIANG Kun, SONG Yu, et al. Drilling Speed Enhancement Method for Extended Reach Wells Based on Machine Learning and Bayesian Optimization[J]. Petroleum Drilling Techniques, 2025, 53(2):1−8. DOI: 10.11911/syztjs.2025027 |
The wellbore trajectories of offshore extended reach wells are complex and characterized by large horizontal displacements, leading to increased downhole friction and subsequently affecting drilling efficiency. This paper introduces a novel method for rate of penetration prediction and drilling parameter optimization in extended reach wells using machine learning, based on drilling and logging data. Initially, raw field data were preprocessed and subjected to correlation analysis, revealing significant correlations between drilling parameters such as bit pressure and rotary speed, as well as wellbore trajectory parameters like hole deviation angle and horizontal displacement, with rate of penetration. Based on these findings, rate of penetration prediction models were developed using BP neural networks, random forests, and support vector machines. The prediction accuracy of these models was evaluated using four performance indicators, with the results showing that the BP neural network model outperformed the others, providing relatively accurate rate of penetration predictions for offshore extended reach wells. Furthermore, the Bayesian optimization algorithm was employed to adjust controllable parameters such as bit pressure, rotary speed, and pump rate, resulting in an average increase in rate of penetration by 18.86%. This study elucidates the impact of drilling parameters and wellbore trajectory parameters on rate of penetration; in extended reach wells and provides theoretical evidence for enhancing drilling efficiency.
[1] |
高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8.
GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8.
|
[2] |
张剑,肖禹涵,周忠易,等. 基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法[J]. 石油钻探技术,2024,52(5):82–90.
ZHANG Jian, XIAO Yuhan, ZHOU Zhongyi, et al. Downhole WOB prediction method based on CNN-Bi-LSTM network optimized by TDCSO[J]. Petroleum Drilling Techniques, 2024, 52(5): 82–90.
|
[3] |
李乾,王磊,王喜杰,等. 东海大位移水平井降摩减阻技术研究与实践[J]. 中国海上油气,2022,34(6):149–156.
LI Qian, WANG Lei, WANG Xijie, et al. Research and practice of friction and drag reduction technology for extended reach horizontal wells in the East China Sea[J]. China Offshore Oil and Gas, 2022, 34(6): 149–156.
|
[4] |
纪国栋,陈畅畅,郭建华,等. 万米深井钻柱减振增能提速方法研究[J]. 石油钻探技术,2024,52(2):100–107. doi: 10.11911/syztjs.2024038
JI Guodong, CHEN Changchang, GUO Jianhua, et al. Research on vibration reduction, energy enhancement, and acceleration methods for drilling strings of 10000-meter deep wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 100–107. doi: 10.11911/syztjs.2024038
|
[5] |
呼怀刚,黄洪春,汪海阁,等. 国内外PDC钻头新进展与发展趋势展望[J]. 石油机械,2024,52(2):1–10.
HU Huaigang, HUANG Hongchun, WANG Haige, et al. New progress and development trends of PDC bits in China and Abroad[J]. China Petroleum Machinery, 2024, 52(2): 1–10.
|
[6] |
佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业,2024,44(1):40–48. doi: 10.3787/j.issn.1000-0976.2024.01.004
SHE Zhaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan Basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40–48. doi: 10.3787/j.issn.1000-0976.2024.01.004
|
[7] |
李中. 渤海深层探井钻井关键技术现状及展望[J]. 钻采工艺,2024,47(2):35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05
LI Zhong. Challenges and technology trends prediction of deep exploration well drilling in Bohai Sea[J]. Drilling & Production Technology, 2024, 47(2): 35–41. doi: 10.3969/J.ISSN.1006-768X.2024.02.05
|
[8] |
HEGDE C, GRAY K. Evaluation of coupled machine learning models for drilling optimization[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 397–407. doi: 10.1016/j.jngse.2018.06.006
|
[9] |
郑双进,江厚顺,熊梦园,等. 基于数据驱动和机理模型的机械钻速预测[J]. 钻采工艺,2025,48(1):78–87. doi: 10.3969/J.ISSN.1006-768X.2025.01.10
ZHENG Shuangjin, JIANG Houshun, XIONG Mengyuan, et al. Data driven and mechanistic model based prediction of rate of penetration[J]. Drilling & Production Technology, 2025, 48(1): 78–87. doi: 10.3969/J.ISSN.1006-768X.2025.01.10
|
[10] |
伊鹏,刘衍聪,郭欣,等. 基于改进自适应遗传算法的钻井参数优化设计[J]. 石油机械,2010,38(2):30–33.
YI Peng, LIU Yancong, GUO Xin, et al. Optimized design of drilling darameters based on enhanced adaptive genetic algorithm[J]. China Petroleum Machinery, 2010, 38(2): 30–33.
|
[11] |
刘光星,李巧花. 基于改进蚁群算法的钻进参数优化[J]. 西安石油大学学报(自然科学版),2019,34(4):31–36. doi: 10.3969/j.issn.1673-064X.2019.04.006
LIU Guangxing, LI Qiaohua. Optimization of drilling parameters based on improved ant colony algorithm[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2019, 34(4): 31–36. doi: 10.3969/j.issn.1673-064X.2019.04.006
|
[12] |
刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速[J]. 西南石油大学学报(自然科学版),2020,42(6):35–41.
LIU Zhaonian, ZHAO Ying, SUN Ting. Data-driven drilling acceleration in Bohai XX Block[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 35–41.
|
[13] |
GAN Chao, CAO Weihua, WU Min, et al. Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia Area, Central China[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106200.
|
[14] |
SOARES C, GRAY K. Real-time predictive capabilities of analytical and machine learning rate of penetration (ROP) models[J]. Journal of Petroleum Science and Engineering, 2019, 172: 934–959. doi: 10.1016/j.petrol.2018.08.083
|
[15] |
NAJJARPOUR M, JALALIFAR H, NOROUZI-APOURVARI S. Half a century experience in rate of penetration management: application of machine learning methods and optimization algorithms: a review[J]. Journal of Petroleum Science and Engineering, 2022, 208(Part D): 109575.
|
[16] |
FENG Hao, ZHOU Yadong, ZENG Weili, et al. A physics-based PSO-BPNN model for civil aircraft noise assessment[J]. Applied Acoustics, 2024, 221: 109992. doi: 10.1016/j.apacoust.2024.109992
|
[17] |
苏兴华,孙俊明,高翔,等. 基于GBDT算法的钻井机械钻速预测方法研究[J]. 计算机应用与软件,2019,36(12):87–92. doi: 10.3969/j.issn.1000-386x.2019.12.014
SU Xinghua, SUN Junming, GAO Xiang, et al. Prediction method of drilling rate of penetration based on GBDT algorithm[J]. Computer Applications and Software, 2019, 36(12): 87–92. doi: 10.3969/j.issn.1000-386x.2019.12.014
|
[18] |
张宏韬,唐芳,吴坤,等. 基于粒子群优化BP神经网络的激光扫描投影系统畸变预测方法[J]. 光子学报,2024,53(6):0611001. doi: 10.3788/gzxb20245306.0611001
ZHANG Hongtao, TANG Fang, WU Kun, et al. Distortion prediction method of laser scanning projection system based on PSO-BP neural network[J]. Acta Photonica Sinica, 2024, 53(6): 0611001. doi: 10.3788/gzxb20245306.0611001
|
[19] |
陈亮,郝祎纯,李巧茹,等. 改进SSA优化的BP神经网络交通量预测模型[J]. 哈尔滨工业大学学报,2024,56(7):94–101.
CHEN Liang, HAO Yichun, LI Qiaoru, et al. Traffic volume forecast model based on BP neural network optimized by improved sparrow search algorithm[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 94–101.
|
[20] |
邹红梅,朱成涛. 基于LSTM和BP神经网络的水库入库径流中长期预测比较研究[J]. 水文,2024,44(4):27–31.
ZOU Hongmei, ZHU Chengtao. Comparative study on mid-long term prediction of reservoir inflow based on LSTM and BP neural network[J]. Journal of China Hydrology, 2024, 44(4): 27–31.
|
[21] |
秦长坤,赵武胜,贾海宾,等. 基于模态分解和深度学习的煤矿微震时序预测方法[J]. 煤炭学报,2024,49(9):3781–3797.
QIN Changkun, ZHAO Wusheng, JIA Haibin, et al. A method for predicting the time series of microseismic events in coal mines based on modal decomposition and deep learning[J]. Journal of China Coal Society, 2024, 49(9): 3781–3797.
|
[22] |
盖建. 基于自动机器学习的采油井压裂效果预测方法[J]. 油气地质与采收率,2023,30(1):161–170.
GE Jian. Prediction method for hydraulic fracturing effect of oil production well based on automatic machine learning technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 161–170.
|
[23] |
郝杨杨,邹宇. 基于BP神经网络的上海生鲜农产品物流需求预测[J]. 上海海事大学学报,2024,45(1):39–45.
HAO Yangyang, ZOU Yu. Logistics demand forecast of fresh agricultural products in Shanghai based on BP neural network[J]. Journal of Shanghai Maritime University, 2024, 45(1): 39–45.
|
[24] |
雍锐. 智能钻井多目标协同优化系统研究与应用[J]. 钻采工艺,2024,47(3):9–14.
YONG Rui. Research and application of intelligent drilling advisory system[J]. Drilling & Production Technology, 2024, 47(3): 9–14.
|
[25] |
葛亮,滕怡,肖国清,等. 基于井下环空参数的溢流智能预警技术研究[J]. 西南石油大学学报(自然科学版),2023,45(2):126–134.
GE Liang, TENG Yi, XIAO Guoqing, et al. Research on overflow intelligent warning technology based on downhole annulus parameters[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(2): 126–134.
|
[26] |
高云伟,罗利民,薛凤龙,等. 基于Stacking集成学习的机械钻速预测方法[J]. 石油机械,2024,52(5):17–24.
GAO Yunwei, LUO Limin, XUE Fenglong, et al. ROP prediction method based on stacking ensemble learning[J]. China Petroleum Machinery, 2024, 52(5): 17–24.
|
[27] |
姜宝胜,白玉湖,徐兵祥,等. 基于集成学习的致密气藏产能预测新方法[J]. 中国海上油气,2024,36(5):120–127.
JIANG Baosheng, BAI Yuhu, XU Bingxiang, et al. A novel approach for predicting production capacity of tight gas reservoirs based on ensemble learning[J]. China Offshore Oil and Gas, 2024, 36(5): 120–127.
|
[28] |
CHEN Xuyue, WENG Chengkai, DU Xu, et al. Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques[J]. Ocean Engineering, 2023, 285(part 2): 115404.
|
[29] |
汤明,王汉昌,何世明,等. 基于PCA-BP算法的机械钻速预测研究[J]. 石油机械,2023,51(10):23–31.
TANG Ming, WANG Hanchang, HE Shiming, et al. Prediction for rate of penetration based on PCA-BP algorithm[J]. China Petroleum Machinery, 2023, 51(10): 23–31.
|
[30] |
黄哲. 探管式智能钻头参数测量装置研制与现场试验[J]. 石油钻探技术,2024,52(4):34–43. doi: 10.11911/syztjs.2024004
HUANG Zhe. Development and field test of probe-type intelligent bit parameter measurement device[J]. Petroleum Drilling Techniques, 2024, 52(4): 34–43. doi: 10.11911/syztjs.2024004
|
1. |
Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
![]() |
|
2. |
范翔宇,蒙承,张千贵,马天寿,李柱正,王旭东,张惊喆,赵鹏斐,邓健,周桂全. 超深地层井壁失稳理论与控制技术研究进展. 天然气工业. 2024(01): 159-176 .
![]() | |
3. |
黄崇辉,石广远,范东阳,全美荣,黄世强,蔡敬耀,郝鹏. 耐高温型聚合物压裂液体系研制与性能评价. 油气田地面工程. 2024(03): 36-41+48 .
![]() | |
4. |
仇常凯,蒋凯,王兵. 克拉苏构造带超深盐下大斜度井钻井关键技术. 石油钻采工艺. 2024(01): 45-52 .
![]() | |
5. |
闫家,梁健,王文,王瑜,张凯,张恒春,曹龙龙,吴纪修,王志刚. 深井高速涡轮钻配套同径取心技术研究. 钻探工程. 2024(04): 23-30 .
![]() | |
6. |
王春华,孙则鑫,丁扬扬,王立朝,许博文,张海涛,王昶皓. 塔东区块庆玉1井超深井优快钻井技术. 石油矿场机械. 2024(05): 59-65 .
![]() | |
7. |
徐力群,李洪涛,杨桃,杜河山,邹林兵. 控压放水技术在超高压超强蠕变软泥岩钻井中的应用. 石油工业技术监督. 2024(10): 43-47 .
![]() | |
8. |
翁炜,吴烁,贺云超,蔺文静,冯美贵,甘浩男,李晓东. 高温硬岩受控钻进新技术、新方法及应用. 地学前缘. 2024(06): 120-129 .
![]() | |
9. |
崔富凯,曹宇光,倪红坚,张恒. 基于冲击振动疲劳分析的自动垂钻与多维减振联合提速系统冲击频率优选. 中国科技论文. 2023(04): 443-448+468 .
![]() | |
10. |
刘湘华. 基于正交试验法的高温封隔器镶齿卡瓦优化. 石油机械. 2023(07): 96-103 .
![]() | |
11. |
杨宏伟,李军,刘金璐,柳贡慧,高旭,赵轩刚. 影响控压放水施工效果的关键参数模拟研究. 石油钻探技术. 2022(02): 85-91 .
![]() | |
12. |
赵欣,孙昊,邱正松,黄维安,徐加放,钟汉毅. 复合盐层多元协同稳定井壁钻井液技术. 深圳大学学报(理工版). 2022(06): 668-674 .
![]() | |
13. |
滕学清,刘洪涛,李宁,王天博,汝大军,董仁. 塔里木博孜区块超深井自动垂直钻井难点与技术对策. 石油钻探技术. 2021(01): 11-15 .
![]() | |
14. |
周建平,杨战伟,徐敏杰,王丽伟,姚茂堂,高莹. 工业氯化钙加重胍胶压裂液体系研究与现场试验. 石油钻探技术. 2021(02): 96-101 .
![]() | |
15. |
宗世玉,邹林兵,史方,苗冬,杨桃,王卫阳. 塔里木盆地库车山前盐膏层钻井技术应用. 石油工业技术监督. 2021(10): 14-16+29 .
![]() | |
16. |
王涛,和鹏飞,宫吉泽,葛俊瑞. 东海深井超深井定向钻完井关键技术. 石油钻采工艺. 2020(05): 578-582 .
![]() | |
17. |
马鸿彦,郑邦贤,陈景旺,郭劲松,宋晓健,李和清. 杨税务潜山超深超高温井安全优快钻井技术. 石油钻采工艺. 2020(05): 573-577 .
![]() |