LI Jun, YANG Hongwei, CHEN Wang, et al. Physical simulation experiment and result analysis of automatically controlled killing in ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):31-37. DOI: 10.11911/syztjs.2024049
Citation: LI Jun, YANG Hongwei, CHEN Wang, et al. Physical simulation experiment and result analysis of automatically controlled killing in ultra-deep well [J]. Petroleum Drilling Techniques,2024, 52(2):31-37. DOI: 10.11911/syztjs.2024049

Physical Simulation Experiment and Result Analysis of Automatically Controlled Killing in Ultra-Deep Well

More Information
  • Received Date: January 21, 2024
  • Revised Date: March 07, 2024
  • Available Online: April 15, 2024
  • Existing ultra-deep well overflow killing relies on manual control of the choke manifold, which suffers from a slow response and large wellbore pressure fluctuation, likely resulting in complex situations such as secondary overflow and leakage. In contrast, automatically controlled killing can achieve the stable control of overflow killing operations during drilling. Therefore, the automatic control method integrating “proportional, integral, and differential (PID) + displacement” double-layer synergic feedback was designed. The automatically controlled killing system for ultra-deep wells was developed, and the physical simulation experiment device for automatically controlled killing was established. The automatically controlled killing experiment was carried out under the conditions of constant target pressure, continuously changing target pressure, and sudden pressure interference. The experiment results show that the automatically controlled killing system can adjust the choke valve opening within about 30 s, and the range of choke pressure fluctuation is less than 0.02 MPa. Compared with manually controlled killing, the automatically controlled killing system possesses good stability, accuracy, response speed, and anti-interference ability. The results of the study provide theoretical basis for the safe killing for complex formations in ultra-deep wells.

  • [1]
    何登发,贾承造,赵文智,等. 中国超深层油气勘探领域研究进展与关键问题[J]. 石油勘探与开发,2023,50(6):1162–1172.

    HE Dengfa, JIA Chengzao, ZHAO Wenzhi, et al. Research progress and key issues of ultra-deep oil and gas exploration in China[J]. Petroleum Exploration and Development, 2023, 50(6): 1162–1172.
    [2]
    汪如军,冯建伟,李世银,等. 塔北–塔中隆起奥陶系富油气三角带断裂特征及控藏分析[J]. 特种油气藏,2023,30(2):26–35.

    WANG Rujun, FENG Jianwei, LI Shiyin, et al. Analysis on fault characteristics and reservoir control of Ordovician hydrocarbon-rich triangle zone in Tabei-Tazhong uplift[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 26–35.
    [3]
    连志刚,常智勇,李路路,等. 玛东地区二叠系火山岩成藏特征及勘探潜力[J]. 特种油气藏,2022,29(5):57–65.

    LIAN Zhigang, CHANG Zhiyong, LI Lulu, et al. Hydrocarbon accumulation characteristics and exploration potential of Permian volcanic rocks in Madong area[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 57–65.
    [4]
    邓虎,唐贵,张林. 超深井高温高压井筒复杂流动压力演变规律研究[J]. 西南石油大学学报(自然科学版),2023,45(4):111–120.

    DENG Hu, TANG Gui, ZHANG Lin. A study on evolution law of complex flow pressure in ultra-deep wells with high temperature and high pressure[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 111–120.
    [5]
    邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82–94.

    DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12): 82–94.
    [6]
    李文拓,罗鸣,黄洪林,等. 高温高压小井眼水平井环空ECD综合计算模型[J]. 石油钻采工艺,2023,45(3):259–268.

    LI Wentuo, LUO Ming, HUANG Honglin, et al. Comprehensive calculation model of annular ECD for high-temperature high-pressure slim-hole horizontal wells[J]. Oil Drilling & Production Technology, 2023, 45(3): 259–268.
    [7]
    何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1–8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar Basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5): 1–8.
    [8]
    王建云,韩涛,赵宽心,等. 塔深5井超深层钻井关键技术[J]. 石油钻探技术,2022,50(5):27–33.

    WANG Jianyun, HAN Tao, ZHAO Kuanxin, et al. Key drilling technologies for the ultra-deep Well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27–33.
    [9]
    刘湘华,杜欢,刘彪,等. 顺北Ⅳ号条带超深高温定向井钻井关键技术[J]. 石油钻采工艺,2022,44(6):665–670.

    LIU Xianghua, DU Huan, LIU Biao, et al. Key technology of directional drilling in the ultra-deep high-temperature Ⅳ belt, the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(6): 665–670.
    [10]
    伍贤柱,胡旭光,韩烈祥,等. 井控技术研究进展与展望[J]. 天然气工业,2022,42(2):133–142.

    WU Xianzhu, HU Xuguang, HAN Liexiang, et al. Research progress and prospect of well control technology[J]. Natural Gas Industry, 2022, 42(2): 133–142.
    [11]
    王建云,杨晓波,王鹏,等. 顺北碳酸盐岩裂缝性气藏安全钻井关键技术[J]. 石油钻探技术,2020,48(3):8–15.

    WANG Jianyun, YANG Xiaobo, WANG Peng, et al. Key technologies for the safe drilling of fractured carbonate gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 8–15.
    [12]
    NADERI LORDEJANI S, BESSELINK B, SCHILDERS W H A, et al. Model complexity reduction and controller design for managed pressure drilling automation[J]. Journal of Process Control, 2023, 122: 69–83. doi: 10.1016/j.jprocont.2022.11.012
    [13]
    刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田,2023,30(4):692–697.

    LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No.2 Block in Shunbei oil-gas field[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 692–697.
    [14]
    FENG Hao, YIN Chenbo, WENG Wenwen, et al. Robotic excavator trajectory control using an improved GA based PID controller[J]. Mechanical Systems and Signal Processing, 2018, 105: 153–168. doi: 10.1016/j.ymssp.2017.12.014
    [15]
    WANG Yunjing, HE Hongyun, QU Zhengwei. PSO-PID based temperature control method for Bifilar Helix Calculable Resistor[C]//2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Los Alamitos, CA: IEEE Computer Society, 2015: 722-725.
    [16]
    SHENASSA M H, KHAKPOUR K. Knowledge base expert system for tuning PID controllers using wireless technology[C]//2008 International Conference on Computer and Communication Engineering. Los Alamitos, CA: IEEE Computer Society, 2008: 310-313.
    [17]
    LIU Yanjie, XU Hao, ZHANG Yangguang. Burner-electrode position control of calcium carbide furnace based on BP-PID controller[C]//2017 IEEE International Conference on Mechatronics and Automation (ICMA). Los Alamitos, CA: IEEE Computer Society, 2017: 810-815.
    [18]
    LIANG Haibo, ZOU Jialing, ZUO Kai, et al. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system[J]. Mechanical Systems and Signal Processing, 2020, 142: 106708. doi: 10.1016/j.ymssp.2020.106708
    [19]
    隋秀香,李相方,孙晓峰,等. 高含硫气井计算机优化压井闭环控制系统[J]. 石油钻探技术,2010,38(1):26–28.

    SUI Xiuxiang, LI Xiangfang, SUN Xiaofeng, et al. Closed-loop well control system with computer optimization for high sulfur gas wells[J]. Petroleum Drilling Techniques, 2010, 38(1): 26–28.
    [20]
    尹邦堂,李相方,隋秀香,等. 计算机优化压井开环控制软件系统研究及应用[J]. 石油钻探技术,2011,39(1):110–114.

    YIN Bangtang, LI Xiangfang, SUI Xiuxiang, et al. Research and application of computer optimization open-loop well killing software system[J]. Petroleum Drilling Techniques, 2011, 39(1): 110–114.
    [21]
    王德玉,刘绘新,孟英峰,等. 多级节流智能控制装置的研制[J]. 西南石油学院学报,2005,27(5):82–84.

    WANG Deyu, LIU Huixin, MENG Yingfeng, et al. Development of multistage throttle intelligent control device[J]. Journal of Southwest Petroleum Institute, 2005, 27(5): 82–84.
    [22]
    金业权,孙泽秋,刘刚. 控压钻井液动节流压力控制系统仿真分析与试验研究[J]. 石油钻探技术,2013,41(2):109–113.

    JIN Yequan, SUN Zeqiu, LIU Gang. Simulation analysis and experimental study of managed pressure drilling hydraulic throttle pressure control system[J]. Petroleum Drilling Techniques, 2013, 41(2): 109–113.
    [23]
    李轶明,夏威,罗方伟,等. 司钻法自动化压井系统试验研究[J]. 中国安全生产科学技术,2019,15(3):30–36.

    LI Yiming, XIA Wei, LUO Fangwei, et al. Experimental study on automatic well killing system of driller’s method[J]. Journal of Safety Science and Technology, 2019, 15(3): 30–36.
    [24]
    张锐尧,李军,柳贡慧,等. 基于AMESim的节流阀自动控制系统[J]. 石油机械,2021,49(4):35–43.

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Automatic throttle control system based on AMESim[J]. China Petroleum Machinery, 2021, 49(4): 35–43.
    [25]
    金晶,梁宗辉,路登明. PID算法在电液执行机构中的应用研究[J]. 液压气动与密封,2023,43(10):50–54.

    JIN Jing, LIANG Zonghui, LU Dengming. Study on application of PID algorithm in electro-hydraulic actuator[J]. Hydraulics Pneumatics & Seals, 2023, 43(10): 50–54.
  • Related Articles

    [1]PU Wenxue, LI Wei, WANG Yufei, ZHAO Haibin, BO Yubing, LIN Ke. Rotary Steerable Drilling Technology for Test Wells in Niuye Block I in Shengli Shale Oil Field[J]. Petroleum Drilling Techniques, 2025, 53(1): 24-30. DOI: 10.11911/syztjs.2025008
    [2]WANG Weiheng, LU Junhua, HAN Qian. Preparation and Field Test of Binary Complex Foam Agent COG[J]. Petroleum Drilling Techniques, 2022, 50(3): 119-124. DOI: 10.11911/syztjs.2022053
    [3]SHI Chongdong, WANG Wanqing, SHI Peiming, YANG Yong. Research on Key Drilling Technology for Horizontal Wells in the Deep Shale Gas Reservoirs in Yanchi Block[J]. Petroleum Drilling Techniques, 2021, 49(6): 23-28. DOI: 10.11911/syztjs.2021007
    [4]YANG Jing, TU Fuhong, HUO Rujun, TAO Ruidong, SHANG Zibo, GUO Liang. Key Technologies for Slim Hole Drilling in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 22-27. DOI: 10.11911/syztjs.2020082
    [5]SHEN Zhaochao, HUO Rujun, YU Yanfei, DONG Yifan, NI Xiaowei, LEI Yu. One-Trip Drilling Technology of the Second-Spud Section for Slim-Holes in the Southern Sulige Block[J]. Petroleum Drilling Techniques, 2020, 48(6): 15-20. DOI: 10.11911/syztjs.2020081
    [6]XIA Haibang, BAO Kai, WANG Yuhai, ZHOU Chengxiang, YANG Yukun. An Integrated Drilling Cuttings Utilization Technique in the South Pingqiao Block of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(2): 63-67. DOI: 10.11911/syztjs.2019038
    [7]YANG Haiping. Optimized and Fast Drilling Technology for Horizontal Shale Gas Wells in Pingqiao and Jiangdong Blocks of Fuling Area[J]. Petroleum Drilling Techniques, 2018, 46(3): 13-19. DOI: 10.11911/syztjs.2018071
    [8]SONG Zheng. Wellbore Trajectory Control Techniques for Horizontal Well in the Jiangdong and Pingqiao Blocks of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(6): 14-18. DOI: 10.11911/syztjs.201706003
    [9]Wang Mo, Du Huan, Eerqm, Bai Binzhen, Zou Shuqiang, Ma Hongyuan. Optimal and Fast Drilling Technology for Shunnan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 50-54. DOI: 10.11911/syztjs.201503010
    [10]Wan Xuxin. Oil-Based Drilling Fluid Applied in Drilling Shale Oil Reservoirs in Bonan Block[J]. Petroleum Drilling Techniques, 2013, 41(6): 44-50. DOI: 10.3969/j.issn.1001-0890.2013.06.009
  • Cited by

    Periodical cited type(13)

    1. 倪华峰. 陕224区块储气库水平井钻完井关键技术优化. 石油钻采工艺. 2023(01): 31-37 .
    2. 王博,赵春,陈显学. 双6储气库大尺寸注采井钻井技术. 石油钻采工艺. 2023(04): 410-417 .
    3. 邓思洪,但斌斌,容芷君,陈刚,樊孝兵,佘运玖. 混合钻头对软硬交错地层破岩特性的仿真研究. 武汉科技大学学报. 2022(01): 46-52 .
    4. 许博文,杨永祥,韩福彬,王建艳,孙妍,李增乐,袁后国. 肇深32H井钻井设计与施工. 石油和化工设备. 2022(10): 83-86+82 .
    5. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看
    6. 赵润琦. 预探井杨柳1井钻井提速关键技术. 石油钻探技术. 2021(05): 26-30 . 本站查看
    7. 张涛,韩成,刘贤玉,徐靖,陈力. 油钻井PDC钻头技术应用现状与展望. 化学工程与装备. 2021(12): 104-105 .
    8. 阮彪,徐小龙,杨洪,曾东初,江民盛. 克百断裂带BY1风险探井优快钻井技术. 辽宁化工. 2020(01): 104-108 .
    9. 吴泽兵,吕澜涛,王勇勇,潘玉杰,张帅. 牙轮—PDC混合钻头的破岩特性及温度场变化. 天然气工业. 2020(03): 99-106 .
    10. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    11. 孙莉. 隆平1井钻井设计与施工. 探矿工程(岩土钻掘工程). 2019(06): 36-40 .
    12. 麻地辉,薛娟,李毅锐. 水力结构增强型PDC钻头应用分析. 西部探矿工程. 2019(12): 64-65+74 .
    13. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (126) PDF downloads (68) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return