XU Qicong, CHEN Dong, FENG Siheng. Development and application of inclination measurement tool while drilling in vertical well sections with high flow rate [J]. Petroleum Drilling Techniques,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041
Citation: XU Qicong, CHEN Dong, FENG Siheng. Development and application of inclination measurement tool while drilling in vertical well sections with high flow rate [J]. Petroleum Drilling Techniques,2024, 52(2):174-180. DOI: 10.11911/syztjs.2024041

Development and Application of Inclination Measurement Tool While Drilling in Vertical Well Sections with High Flow Rate

More Information
  • Received Date: January 08, 2024
  • Revised Date: February 06, 2024
  • Available Online: April 18, 2024
  • In order to solve the problems of serious erosion, high failure rate, and large cost of inclination measurement tools while drilling due to high drilling flow rate in upper large vertical well sections of deep and ultra-deep wells, the methods of expanding the flow area, simulation optimization of flow field, and local carbide protection in the area of intense erosion were comprehensively adopted, and a rotary valve group with large channel and erosion resistance was developed. Multistage composite vibration reduction methods such as flexible suspension fixing of accelerometer and silicone potting adhesive of circuit board were adopted to improve the shock resistance of electronic circuit of inclination measurement tools while drilling. By designing a fast transmission code, electronic circuit with low power consumption, and energy-saving operation mode, the efficiency and endurance of inclination measurement tools while drilling were improved. The key components of the rotary valve group with large channel and erosion resistance were developed, and the shock resistance, inclination measurement efficiency, and endurance of the inclination measurement tools were enhanced by different technical methods. An inclination measurement tool while drilling for vertical wells with a high drilling flow rate was developed. The tool was used to monitor the angle of inclination while drilling in 12 wells in Sichuan, Chongqing, and Xinjiang regions and showed the ability to withstand erosion due to the high flow rate. The maximum applicable flow rate of the tool reached 120 L/s, and the operation was stable and reliable. The failure rate was less than 0.5 times/month, and the battery could work for more than 30 days. The field application shows that the inclination measurement tool while drilling for vertical well sections with a high flow rate can meet the requirements of inclination measurement while drilling in large vertical well sections of deep and ultra-deep wells, providing support for obtaining high-quality vertical well sections of deep and ultra-deep wells.

  • [1]
    刘岩生,张佳伟,黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312–324.

    LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1): 312–324.
    [2]
    陈超峰,刘新宇,李雪彬,等. 准噶尔盆地呼探 1 井高温高压超深井试油测试技术[J]. 石油钻采工艺,2023,45(4):447–454.

    CHEN Chaofeng, LIU Xinyu, LI Xuebin, et al. High-temperature, high-pressure & ultra-deep well testing technology used in Well Hutan 1 in the Junggar Basin[J]. Oil Drilling & Production Technology, 2023, 45(4): 447–454.
    [3]
    李涛,苏强,杨哲,等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术,2023,51(2):7–15.

    LI Tao, SU Qiang, YANG Zhe, et al. Current practices and research directions for drilling and completion technologies for ultra-deep wells in western Sichuan[J]. Petroleum Drilling Techniques, 2023, 51(2): 7–15.
    [4]
    佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示[J]. 天然气工业,2024,44(1):40–48.

    SHE Chaoyi. Progress in ultra-deep drilling and completion technology in the Sichuan Basin and its implications for extra-deep wells of more than ten thousand meters in depth[J]. Natural Gas Industry, 2024, 44(1): 40–48.
    [5]
    邓虎,唐贵,张林. 超深井高温高压井筒复杂流动压力演变规律研究[J]. 西南石油大学学报(自然科学版),2023,45(4):111–120.

    DENG Hu, TANG Gui, ZHANG Lin. A study on evolution law of complex flow pressure in ultra-deep wells with high temperature and high pressure[J]. ournal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 111–120.
    [6]
    万夫磊,曹晓丽,张尧,等. 川中蓬莱气区复杂超深井钻井技术研究与实践[J]. 钻采工艺,2023,46(6):34–40.

    WAN Fulei, CAO Xiaoli, ZHANG Yao, et al. Research and practice of complex ultra-deep well drilling technology in PL[J]. Drilling & Production Technology, 2023, 46(6): 34–40.
    [7]
    赵常青. PP-MWD旋转阀结构优化及信号特性研究[D]. 西安:西安理工大学,2017.

    ZHAO Changqing. Structure optimization of PP-MWD rotary valve and research of signal characteristics[D]. Xi’an: Xi’an University of Technology, 2017.
    [8]
    汤历平,刘宸希,张磊,等. 直井测斜泥浆脉冲发生器阀头参数优化研究[J]. 机械强度,2023,45(5):1130–1140.

    TANG Liping, LIU Chenxi, ZHANG Lei, et al. Study on the parameter optimization of valve head of vertical well inclinometer[J]. Journal of Mechanical Strength, 2023, 45(5): 1130–1140.
    [9]
    张磊,李富强,陈天宇,等. 直井测斜仪阀头流场及冲蚀特性研究[J]. 石油矿场机械,2023,52(2):9–14.

    ZHANG Lei, LI Fuqiang, CHEN Tianyu, et al. Erosion characteristics of valve head in vertical well inclinometer[J]. Oil Field Equipment, 2023, 52(2): 9–14.
    [10]
    王智明,邵天宇,张松炜,等. 摆动阀泥浆脉冲器传动方案设计[J]. 现代制造技术与装备,2020,56(7):28–31.

    WANG Zhiming, SHAO Tianyu, ZHANG Songwei, et al. Design of the transmission scheme of swing valve pulser based on CFD[J]. Modern Manufacturing Technology and Equipment, 2020, 56(7): 28–31.
    [11]
    李沁,黄津松,石利星,等. 电子式随钻直井测斜仪在塔里木油田的应用[J]. 石化技术,2020,27(7):73–74.

    LI Qin, HUANG Jinsong, SHI Lixing, et al. Application of electronic vertical inclinometer in Tarim Oilfield[J]. Petrochemical Industry Technology, 2020, 27(7): 73–74.
    [12]
    李启翠,史文专. 电子式随钻直井测斜仪在海上油气田的应用[J]. 石油管材与仪器,2016,2(5):41–43.

    LI Qicui, SHI Wenzhuan. Application of the electronic inclinometer for vertical well while drilling in offshore oilfield[J]. Petroleum Tubular Goods & Instruments, 2016, 2(5): 41–43.
    [13]
    张维国. 泥浆脉冲发生器硬质合金转子失效机理及性能强化研究[D]. 长春:吉林大学,2022.

    ZHANG Weiguo. Failure mechanism and performance strengthening of cemented carbide rotor for mud pulser[D]. Changchun: Jilin University, 2022.
    [14]
    鲍东升,罗登银,曲春雨,等. 耐冲蚀耐腐蚀硬质合金泥浆脉冲发生器转子及其制备方法[J]. 现代制造技术与装备,2022,58(5):112–114.

    BAO Dongsheng, LUO Dengyin, QU Chunyu, et al. Erosion resistant and corrosion resistant cemented carbide mud pulser generator rotor and fabrication technique[J]. Modern Manufacturing Technology and Equipment, 2022, 58(5): 112–114.
    [15]
    药晓江,卢华涛,尚捷,等. 随钻测井仪流道转换器优化设计与数值分析[J]. 石油钻探技术,2021,49(5):121–126.

    YAO Xiaojiang, LU Huatao, SHANG Jie, et al. Optimization design and numerical analysis of flow passage converters in LWD tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121–126.
    [16]
    YUAN Peng, YU Bo, SOLOMON H, et al. Erosion of mud pulse telemetry tools: numerical simulation and field studies[R]. SPE 183823, 2017.
    [17]
    王智明,肖俊远,菅志军. 基于CFD的旋转阀泥浆脉冲器转子结构参数研究[J]. 现代制造技术与装备,2011,47(6):3–4.

    WANG Zhiming, XIAO Junyuan, JIAN Zhijun. The rotor parameter study of rotary valve mud pulser base on CFD[J]. Modern Manufacturing Technology and Equipment, 2011, 47(6): 3–4.
    [18]
    MOHAMMAD E, YUAN Peng, MUHAMMAD S, et al. Erosion and structural integrity of mud pulse telemetry tools: numerical simulation and field studies[R]. OTC 29566, 2019.
    [19]
    龚子华,徐秀杰,高小明. 脉冲器限位轴多冲接触疲劳性分析[J]. 钻采工艺,2009,32(1):61–63.

    GONG Zihua, XU Xiujie, GAO Xiaoming. Endurance research on rotary-valve pulser axes under multiple impact load[J]. Drilling & Production Technology, 2009, 32(1): 61–63.
    [20]
    郭建军,刘海军,权景明. 无线随钻系统噪声信号分析与控制[J]. 石油矿场机械,2008,37(9):10–13.

    GUO Jianjun, LIU Haijun, QUAN Jingming. Analysis and control of system noise in MWD[J]. Oil Field Equipment, 2008, 37(9): 10–13.
    [21]
    刘永彪. MCM-D薄膜多层布线工艺技术研究[J]. 电子工艺技术,2016,37(5):257–259.

    LIU Yongbiao. Study on technology of thin film mutli-layer wiring[J]. Electronics Process Technology, 2016, 37(5): 257–259.
    [22]
    田小超,蒋必辞. 随钻伽马测井探管节电降功耗控制方法与系统设计[J]. 煤矿安全,2022,53(1):161–166.

    TIAN Xiaochao, JIANG Bici. Control method and system design for power saving and power consumption reduction of gamma LWD probe tube[J]. Safety in Coal Mines, 2022, 53(1): 161–166.
    [23]
    边海龙,彭烈新. 无线随钻测量泥浆脉冲的信号检测及处理技术[J]. 科学技术创新,2021(31):66–68.

    BIAN Hailong, PENG Liexin. Signal detection and processing technology of wireless mud pulse measurement while drilling[J]. Scientific and Technological Innovation, 2021(31): 66–68.
  • Cited by

    Periodical cited type(11)

    1. 赵小光,胡东伟,李媛,董春,翁华涛. 超低渗砂岩储层深穿透缓速解堵增注工艺. 化学工程师. 2024(04): 90-94+21 .
    2. 孙亚东,杨立,李新亮. 高温酸化杂化胶凝剂的研制与性能评价. 油田化学. 2023(02): 223-228 .
    3. 兰健,戴姗姗,戴元梅,陈楠,鲁红升. 耐高温酸液稠化剂的合成与性能评价. 油田化学. 2023(04): 636-642 .
    4. 李朋,赖小娟,王磊,李鹏,高进浩,张小鑫,刘贵茹. 一种耐高温酸液稠化剂的制备及性能. 精细化工. 2022(02): 411-416+432 .
    5. 刘坤,曹杰,焦克波,李永寿. 缓释酸体系的研究进展. 精细石油化工. 2022(01): 68-73 .
    6. 邢沛东,卓兴家,曹广胜,张宁,赵小萱. 岩石的酸化敏感性微观机理研究. 当代化工. 2022(08): 1803-1806+1870 .
    7. 魏向阳,王磊,赖小娟,苗林,王婷婷,党志强. 耐高温疏水缔合型酸液稠化剂的合成与性能. 石油化工. 2022(10): 1211-1217 .
    8. 张伟,任登峰,李富荣,刘爽,王艳,王桥,白文路. 一种耐高温酸液稠化剂的研制. 钻采工艺. 2022(06): 129-133 .
    9. 曹广胜,李哲,隋雨,白玉杰,王大業. S区碳酸盐岩耐高温酸压酸液体系优选及性能评价. 石油化工高等学校学报. 2020(05): 48-53 .
    10. 王丽伟,石阳,高莹,韩秀玲,王燕. 我国油气藏增产酸液体系的发展历程及进展. 河南化工. 2019(07): 3-6 .
    11. 白建文,陶秀娟,韩红旭,朱李安,杨超,翟晓鹏,郭志阳. 苏里格气田东区碳酸盐岩储层酸压用单剂稠化酸. 天然气工业. 2019(12): 88-94 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (155) PDF downloads (85) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return