XU Fuqiang, XUE Yafei, SONG Xianzhi, et al. Heat extraction evaluation and well pattern comparison of abandoned oil wells converted into geothermal wells [J]. Petroleum Drilling Techniques, 2024, 52(6):156−166. DOI: 10.11911/syztjs.2024021
Citation: XU Fuqiang, XUE Yafei, SONG Xianzhi, et al. Heat extraction evaluation and well pattern comparison of abandoned oil wells converted into geothermal wells [J]. Petroleum Drilling Techniques, 2024, 52(6):156−166. DOI: 10.11911/syztjs.2024021

Heat Extraction Evaluation and Well Pattern Comparison of Abandoned OilWells Converted into Geothermal Wells

More Information
  • Received Date: March 22, 2023
  • Revised Date: December 11, 2023
  • Available Online: November 10, 2024
  • Geothermal energy development has many advantages, but well construction accounts for half of the total costs, which restricts the promotion and utilization of geothermal energy. Some abandoned oil wells have abundant geothermal resources and converting them into geothermal wells for heat extraction can significantly reduce costs and improve economic efficiency. Moreover, the reservoirs that reach the economic limit of water cut can also be used for heat extraction to achieve co-production of heat and oil. Currently, most research on heat extraction from geothermal well patterns focuses on fixed well patterns or/and does not consider oil-water two-phase flows. However, the oil-water flow and heat transfer characteristics of different well patterns are of great significance for the design and adjustment of geothermal development schemes of oilfields. Therefore, a heat-flow coupling model considering oil-water two-phase flows was established. The production characteristics of diverse well patterns were compared, such as production temperature, pressure difference between injection and production, liquid production, and oil production. Research shows that the maximum difference of the production temperatures and pressure differences between diverse well patterns can reach 22.56 K and 1.03 MPa, respectively. When the injection wells and production wells are cross-symmetrically distributed, the heat extraction system has the highest production temperature and oil production, as well as a lower pressure difference between injection and production. The research reveals the evolution characteristics of temperature and pressure fields during heat extraction from different well patterns, providing a basis for designing and adjusting the well patterns and some guidance for the evaluation of the co-production of heat and oil in oilfields.

  • [1]
    谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84. doi: 10.11911/syztjs.2020042

    XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042
    [2]
    BP. Statistical review of world energy 2020[R]. London: BP, 2020.
    [3]
    BU Xianbiao, MA Weibin, LI Huashan. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80–85. doi: 10.1016/j.renene.2011.10.009
    [4]
    姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892–2910. doi: 10.6038/cjg20160815

    JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th ed)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892–2910. doi: 10.6038/cjg20160815
    [5]
    LI Kewen, BIAN Huiyuan, LIU Changwei, et al. Comparison of geothermal with solar and wind power generation systems[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1464–1474. doi: 10.1016/j.rser.2014.10.049
    [6]
    KUJAWA T, NOWAK W, STACHEL A A. Analysis of the exploitation of existing deep production wells for acquiring geothermal energy[J]. Journal of Engineering Physics and Thermophysics, 2005, 78(1): 127–135. doi: 10.1007/s10891-005-0038-1
    [7]
    CAULK R A, TOMAC I. Reuse of abandoned oil and gas wells for geothermal energy production[J]. Renewable Energy, 2017, 112: 388–397. doi: 10.1016/j.renene.2017.05.042
    [8]
    宋先知,张逸群,李根生,等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版),2021,54(9):971–981.

    SONG Xianzhi, ZHANG Yiqun, LI Gensheng, et al. Performance study of the downhole coaxial closed-loop heat exchange technology in Xiong'an New Area[J]. Journal of Tianjin University(Science and Technology), 2021, 54(9): 971–981.
    [9]
    于超,张逸群,宋先知,等. 井下同轴闭式地热系统循环工质综合评价优选[J]. 石油钻探技术,2021,49(5):101–107. doi: 10.11911/syztjs.2021066

    YU Chao, ZHANG Yiqun, SONG Xianzhi, et al. Comprehensive evaluation and optimization of circulating working fluids in the coaxial borehole heat exchanger closed-loop geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(5): 101–107. doi: 10.11911/syztjs.2021066
    [10]
    宋先知,许富强,宋国锋. 废弃井地热能开发技术现状与发展建议[J]. 石油钻探技术,2020,48(6):1–7. doi: 10.11911/syztjs.2020120

    SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical status and development suggestions in exploiting geothermal energy from abandoned wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1–7. doi: 10.11911/syztjs.2020120
    [11]
    GONG Bin, LIANG Hongbin, XIN Shouliang, et al. Numerical studies on power generation from co-produced geothermal resources in oil fields and change in reservoir temperature[J]. Renewable Energy, 2013, 50: 722–731. doi: 10.1016/j.renene.2012.07.026
    [12]
    WESTPHAL D, WEIJERMARS R. Economic appraisal and scoping of geothermal energy extraction projects using depleted hydrocarbon wells[J]. Energy Strategy Reviews, 2018, 22: 348–364. doi: 10.1016/j.esr.2018.10.008
    [13]
    NGHIEM L, COLLINS D A, SHARMA R. Seventh SPE comparative solution project: modelling of horizontal wells in reservoir simulation[R]. SPE 21221, 1991.
    [14]
    朱广海,刘章聪,熊旭东,等. 电加热稠油热采井筒温度场数值计算方法[J]. 石油钻探技术,2019,47(5):110–115. doi: 10.11911/syztjs.2019109

    ZHU Guanghai, LIU Zhangcong, XIONG Xudong, et al. Numerical calculation method of the wellbore temperature field for electric heating heavy oil thermal recovery[J]. Petroleum Drilling Techniques, 2019, 47(5): 110–115. doi: 10.11911/syztjs.2019109
    [15]
    蔡少斌,杨永飞,刘杰. 考虑热流固耦合作用的多孔介质孔隙尺度两相流动模拟[J]. 力学学报,2021,53(8):2225–2234. doi: 10.6052/0459-1879-21-294

    CAI Shaobin, YANG Yongfei, LIU Jie. Pore-scale simulation of multiphase flow considering thermo-hydro-mechanical coupling effect in porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2225–2234. doi: 10.6052/0459-1879-21-294
    [16]
    HOLZBECHER E O. Modeling density-driven flow in porous media: Principles, numerics, software[M]. Berlin: Springer, 1998.
    [17]
    HEMMATI-SARAPARDEH A, SHOKROLLAHI A, TATAR A, et al. Reservoir oil viscosity determination using a rigorous app-roach[J]. Fuel, 2014, 116: 39–48. doi: 10.1016/j.fuel.2013.07.072
    [18]
    WANG Jing, LIU Jungang, LI Zhaoguo, et al. Synchronous injection-production energy replenishment for a horizontal well in an ultra-low permeability sandstone reservoir: a case study of Changqing Oilfield in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 827–835. doi: 10.1016/S1876-3804(20)60098-2
    [19]
    XU Fuqiang, SONG Xianzhi, SONG Guofeng, et al. Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode[J]. Energy, 2023, 269: 126777. doi: 10.1016/j.energy.2023.126777
    [20]
    GeoMark Research. RFD base (reservoir fluid database)[Z]. 2003.
    [21]
    宋先知,许富强,姬佳炎,等. 多层合采油藏废弃井网取热性能评价[J]. 天然气工业,2022,42(4):54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005

    SONG Xianzhi, XU Fuqiang, JI Jiayan, et al. Evaluation on the heat extraction performance of abandoned well pattern in multi-layer commingled production oil reservoirs[J]. Natural Gas Industry, 2022, 42(4): 54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005
    [22]
    BROOKS R H, COREY A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92(2): 61–88. doi: 10.1061/JRCEA4.0000425
    [23]
    石宇. 多分支井循环二氧化碳开采地热机理与参数研究[D]. 北京:中国石油大学(北京),2020.

    SHI Yu. Study on mechanism and parameters of geothermal exploitation using multilateral wells with CO2 as working fluid[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [24]
    EPPELBAUM L, KUTASOV I, PILCHIN A. Thermal properties of rocks and density of fluids[M]//EPPELBAUM L, KUTASOV I, PILCHIN A. Applied geothermics. Berlin: Springer, 2014: 99-149.
    [25]
    宋子豪. 油田废弃井网循环取热规律与方案优化研究 [D]. 北京:中国石油大学(北京), 2023.

    SONG Zihao. Study on circulation heat extraction rule and scheme optimization of abandoned oilfield well pattern[D]. Beijing: China University of Petroleum (Beijing), 2023.
    [26]
    XU Fuqiang, SONG Xianzhi, SONG Zihao, et al. Heat extraction and interlayer interference in heterogeneous multi-layer commingled production oil reservoir[R]. ARMA-2022-0504, 2022.
    [27]
    ABDELGAWAD A, MALEKZADEH D. Determination of the drainage area of horizontal wells in the presence of vertical wells: effect of reservoir and well parameters[J]. Journal of Canadian Petroleum Technology, 2001, 40(10): 45–54.
  • Cited by

    Periodical cited type(1)

    1. 纪照生,袁国栋,晁文学,蒋金宝,白旺东. 塔里木盆地超深小井眼定向钻井提速提效关键技术. 石油钻探技术. 2024(04): 8-14 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (122) PDF downloads (37) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return