Citation: | AI Kun, HAN Yujiao, GAO Yuan. Electrode system design and response simulation of azimuthal lateral resistivity logging while drilling [J]. Petroleum Drilling Techniques, 2024, 52(3):127-136. DOI: 10.11911/syztjs.2023118 |
Wireline logging in horizontal wells in high resistivity formations faces high risk,and its logging data are subject to serious lackage, which restricts accurate geosteering drilling and high-quality reservoir identification. Therefore, a novel electrode system of azimuthal lateral resistivity logging while drilling based on the non-contact coupling principle was proposed, with radial, longitudinal, and circumferential detection abilities. The effects of wellbore size, flushed zone resistivity, formation inclination, layer thickness, and surrounding rock resistivity on the detection results were investigated by using the three-dimensional finite element simulation method. The electrode system size and detection characteristics were determined, and the ambient impact calibration diagram was established. The simulation results show that the toroidal coil excitation instrument for azimuthal lateral resistivity logging while drilling has a shallow detection depth, which is generally less than that of the cable-type instrument, but it is less affected by intrusion during the drilling process. It can meet the needs of logging while drilling, has good longitudinal zone identification ability, and can define 0.5 m thin layers under the condition of high resistivity formation. With the help of quad azimuthal measurement, the position of high and low resistivity abnormal bodies can be well identified, and the formation inclination can be determined. The research results have important guiding significance for the structural parameter design of instruments for azimuthal lateral logging while drilling and exploring for high resistivity reservoirs.
[1] |
李辉,鄢志丹,刘长波,等. 随钻方位电阻率测井仪器响应数值模拟[J]. 中国石油大学学报(自然科学版),2019,43(1):42–52.
LI Hui, YAN Zhidan, LIU Changbo, et al. Numerical simulation of azimuthal resistivity LWD instrument responses[J]. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(1): 42–52.
|
[2] |
陈华,范宜仁,邓少贵,等. 水平井中随钻电阻率实时确定地层界面方法[J]. 吉林大学学报(地球科学版),2011,41(5):1623–1629.
CHEN Hua, FAN Yiren, DENG Shaogui, et al. Methods for real-time determination of formation boundary with LWD resistivity logs in horizontal wells[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(5): 1623–1629.
|
[3] |
吴进波,陈鸣,孙殿强,等. 随钻地层测试在大斜度井油基钻井液中的应用[J]. 石油钻采工艺,2022,44(2):178–185.
WU Jinbo, CHEN Ming, SUN Dianqiang, et al. Application of formation testing while drilling in highly deviated wells with oil-based drilling fluid[J]. Oil Drilling & Production Technology, 2022, 44(2): 178–185.
|
[4] |
吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022,50(6):7–13.
WU Baizhi, YANG Zhen, GUO Tongzheng, et al. Response characteristics of logging while drilling system with multi-scale azimuthal electromagnetic waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7–13.
|
[5] |
朱军,杨善森,刘刚,等. 随钻双侧向电阻率测井响应数值模拟分析[J]. 测井技术,2017,41(2):146–150.
ZHU Jun, YANG Shansen, LIU Gang, et al. Numerical analysis of logging responses for dual laterolog resistivity logging-while-drilling tool[J]. Well Logging Technology, 2017, 41(2): 146–150.
|
[6] |
朱祖扬. 随钻声波远探测声波速度成像数值模拟与试验[J]. 石油钻探技术,2022,50(6):35–40.
ZHU Zuyang. Numerical simulation and test of velocity imaging for remote detection acoustic logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 35–40.
|
[7] |
刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022,50(6):41–48.
LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41–48.
|
[8] |
孙志峰,仇傲,金亚,等. 随钻多极子声波测井仪接收声系的优化设计与试验[J]. 石油钻探技术,2022,50(4):114–120.
SUN Zhifeng, QIU Ao, JIN Ya, et al. Optimal design and experimental study of the receiver sonde in multipole acoustic LWD tools[J]. Petroleum Drilling Techniques, 2022, 50(4): 114–120.
|
[9] |
REZMER-COOPER I, BRATTON T, KRABBE H. The use of resistivity-at-the-bit images and annular pressure while drilling in preventing drilling problems[J]. SPE Drilling & Completion, 2001, 16(1): 35–42.
|
[10] |
TRIBE I, HOLM G, HARKER S, et al. Optimized horizontal well placement in the Otter Field, North Sea using new formation imaging while drilling technology[R]. SPE 83968, 2003.
|
[11] |
ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[R]. SPWLA-2011-LLL, 2011.
|
[12] |
PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.
|
[13] |
张海波,窦修荣,王志国,等. 国外随钻成像技术研究进展及展望[J]. 国外测井技术,2019,40(5):28–32.
ZHANG Haibo, DOU Xiurong, WANG Zhiguo, et al. The research progress and prospects of imaging while drilling technology[J]. World Well Logging Technology, 2019, 40(5): 28–32.
|
[14] |
朱军,李安宗,陈鹏,等. GRT随钻侧向电阻率测井响应数值模拟研究[C]//第十八届测井年会论文集. 北京:中国石油学会,2013:61-70.
ZHU Jun, LI Anzong, CHENG Peng, et al. Numerical simulation study of GRT lateral resistivity logging response with drilling[C]//Collected Papers of the 18th Annual Well Logging Conference. Beijing: Chinese Petroleum Society, 2013: 61-70.
|
[15] |
李铭宇,柯式镇,康正明,等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术,2018,46(1):128–134.
LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
|
[16] |
李安宗,李启明,朱军,等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术,2014,38(4):407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging responses for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi: 10.3969/j.issn.1004-1338.2014.04.006
|
[17] |
李新,倪卫宁,米金泰,等. 一种基于非接触耦合原理的新型随钻微电阻率成像仪器[J]. 中国石油大学学报(自然科学版),2020,44(6):46–52.
LI Xin, NI Weining, MI Jintai, et al. A novel high-resolution resistivity imaging while drilling tool based on contactless coupling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 46–52.
|
[18] |
GIANZERO S, CHEMALI R, LIN Y Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
|
[19] |
闫伟,孟祥龙,冯永存,等. 砂砾岩电阻率与岩石力学参数相关性研究[J]. 石油钻采工艺,2022,44(1):9–14.
YAN Wei, MENG Xianglong, FENG Yongcun, et al. Study on correlation between glutenite resistivity and rock mechanical parameters[J]. Oil Drilling & Production Technology, 2022, 44(1): 9–14.
|
[20] |
李大潜,郑宋穆,谭永基,等. 有限元素法在电测井中的应用[M]. 北京:石油工业出版社,1980.
LI Daqian, ZHENG Songmu, TAN Yongji, et al. Application of finite element method in electrical logging[M]. Beijing: Petroleum Industry Press, 1980.
|
[21] |
WANG H M, SHEN L C, ZHANG G J. Dual laterolog response in 3-D environments[R]. SPWLA-1998-X, 1998.
|