FENG Xingen, FANG Junwei, FANG Yuyan, et al. Development and performance evaluation of a high temperature-resistant isolation membrane retarded acid solution system [J]. Petroleum Drilling Techniques,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064
Citation: FENG Xingen, FANG Junwei, FANG Yuyan, et al. Development and performance evaluation of a high temperature-resistant isolation membrane retarded acid solution system [J]. Petroleum Drilling Techniques,2023, 51(6):99-105. DOI: 10.11911/syztjs.2023064

Development and Performance Evaluation of a High Temperature-Resistant Isolation Membrane Retarded Acid Solution System

More Information
  • Received Date: June 20, 2022
  • Revised Date: July 31, 2023
  • Available Online: August 24, 2023
  • In order to solve the problems of high viscosity of acid solution and low pump displacement in acid fracturing stimulation of carbonate reservoirs, the isolation membrane retarder for high temperatures was synthesized by free radical aqueous polymerization with acrylamide (AM), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and fluorine-containing monomer (ZTA) as monomers. An acid-resistant drag reducer was prepared by inverse emulsion polymerization, with AM, AMPS, and methacryloyloxyethyl trimethylammonium chloride (DMC) as monomers. The results of infrared, thermogravimetric, and X-ray diffraction (XRD) analysis of the isolation membrane retarder and drag reducer showed that they conformed to the molecular structure design, and their thermal decomposition temperatures were 209.13 °C and 243.70 °C, respectively. A retarded acid solution system with a high temperature-resistant isolation membrane was formed through compatibility testing and optimization on the concentration of isolation membrane retarder and acid-resistant drag reducer. The viscosity of the acid solution system was less than 5 mPa·s. In a 20% hydrochloric acid system, the average acid rock reaction rate was 4.31 μmol/(cm2·s) at 140 °C, which was 34.8% lower than the gelled acid system, and a drag reduction rate of the acid solution system (15% hydrochloric acid) was 62.7%. The results showed that the developed retarded acid solution system with high temperature-resistant isolation membrane resulted in good retarding and drag reduction performance and could be used for acid fracturing and acidizing in Tahe Oilfield.

  • [1]
    吴丰,代槿,姚聪,等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田,2022,29(1):33–39.

    WU Feng, DAI Jin, YAO Cong, et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Yingshan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2022, 29(1): 33–39.
    [2]
    米强波. 塔河油田碳酸盐岩储层酸压改造效果[J]. 油气田地面工程,2014,33(4):88–89.

    MI Qiangbo. Effect of acid fracturing on carbonate reservoir in Tahe Oilfield[J]. Oil-Gas Field Surface Engineering, 2014, 33(4): 88–89.
    [3]
    钟小军,张锐,吴刚,等. 复杂非均质碳酸盐岩储层酸岩反应动力学特征及酸压对策研究[J]. 钻井液与完井液,2020,37(6):798–802.

    ZHONG Xiaojun, ZHANG Rui, WU Gang, et al. Study on dynamic characteristics of acid rock reaction and acid fracturing countermeasures in complex heterogeneous carbonate reservoirs[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 798–802.
    [4]
    陈力力,刘飞,杨建,等. 四川盆地深层超深层碳酸盐岩水平井分段酸压关键技术[J]. 天然气工业,2022,42(12):56–64.

    CHEN Lili, LIU Fei, YANG Jian, et al. Horizontal well staged acid fracturing technology for deep and ultra-deep carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 56–64.
    [5]
    闫杰,张涵,郭志杰,等. 高分子聚合物稠化剂的制备及其压裂液应用性能研究[J]. 钻井液与完井液,2022,39(1):107–113.

    YAN Jie, ZHANG Han, GUO Zhijie, et al. Preparation of a high molecular weight polymer thickening agent and its use in fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 107–113.
    [6]
    张伟,任登峰,李富荣,等. 一种耐高温酸液稠化剂的研制[J]. 钻采工艺,2022,45(6):129–133.

    ZHANG Wei, REN Dengfeng, LI Furong, et al. Development of a high temperature resistant acid thickener[J]. Drilling & Production Technology, 2022, 45(6): 129–133.
    [7]
    王磊,薛蓉,赵倩云,等. 油气藏酸液体系研究进展[J]. 应用化工,2018,47(3):548–553.

    WANG Lei, XUE Rong, ZHAO Qianyun, et al. A critical review of acidizing fluids in reservoirs for recent years[J]. Applied Chemical Industry, 2018, 47(3): 548–553.
    [8]
    MAHESHWARI P, MAXEY J, BALAKOTAIAH V. Reactive-dissolution modeling and experimental comparison of wormhole formation in carbonates with gelled and emulsified acids[J]. SPE Production & Operations, 2016, 31(2): 103–119.
    [9]
    CAIRNS A J, AL-MUNTASHERI G A, SAYED M, et al. Targeting enhanced production through deep carbonate stimulation: Stabilized acid emulsions[R]. SPE 178967, 2016.
    [10]
    ALOTAIBI F, DAHLAN M, KHALDI M, et al. Evaluation of inorganic-crosslinked-based gelled acid system for high-temperature applications[R]. SPE 199258, 2020.
    [11]
    安娜,罗攀登,李永寿,等. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术,2020,48(2):93–97.

    AN Na, LUO Pandeng, LI Yongshou, et al. Development of solid granular acid for the deep acid-fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93–97.
    [12]
    李小刚,秦杨,朱静怡,等. 自生酸酸液体系研究进展及展望[J]. 特种油气藏,2022,29(6):1–10.

    LI Xiaogang, QIN Yang, ZHU Jingyi, et al. Research progress and prospect of autogenic acid system[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 1–10.
    [13]
    林永茂,缪尉杰,刘林,等. 川西南靖和1井茅口组立体酸压技术[J]. 石油钻探技术,2022,50(2):105–112. doi: 10.11911/syztjs.2022009

    LIN Yongmao, MIAO Weijie, LIU Lin, et al. 3D acid fracturing technology in Maokou Formation of Well Jinghe 1 in southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105–112. doi: 10.11911/syztjs.2022009
    [14]
    吴峙颖,胡亚斐,蒋廷学,等. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究[J]. 石油钻探技术,2022,50(4):90–96.

    WU Shiying, HU Yafei, JIANG Tingxue, et al. Study on propagation and diversion characteristics of hydraulic fractures in vuggy carbonate reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90–96.
    [15]
    胡锋,胡雅洁. 塔河油田关于变粘酸酸压工艺的有效研究[J]. 中国石油和化工标准与质量,2013,33(21):127–128.

    HU Feng, HU Yajie. Effective research on variable viscosity acid fracturing process in Tahe Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(21): 127–128.
    [16]
    赵永昌. 塔河高温碳酸盐岩储层酸压改造交联酸体系优化研究[D]. 北京: 中国石油大学(北京), 2020.

    ZHAO Yongchang. Optimization of crosslinked acid system in acid fracturing of Tahe high temperature carbonate reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [17]
    王萌,车明光,周长林,等. 一种新型耐高温碳酸盐岩酸压胶凝酸及其应用[J]. 钻井液与完井液,2020,37(5):670–676.

    WANG Meng, CHE Mingguang, ZHOU Changlin, et al. A novel gelled acid for the acid fracturing of the high-temperature carbonates and its application[J]. Drilling Fluid & Completion Fluid, 2020, 37(5): 670–676.
    [18]
    穆代峰,贾文峰,姚奕明,等. 胶凝酸与交联酸一体化耐高温缓速酸研究[J]. 钻井液与完井液,2019,36(5):634–638.

    MU Daifeng, JIA Wenfeng, YAO Yiming, et al. Study on the integration of gelled acid and crosslinked acid to form high temperature retarded acid[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 634–638.
    [19]
    王旭,贾文峰,任倩倩,等. 一种新型乳化胶凝酸的制备与性能评价[J]. 钻井液与完井液,2017,34(5):111–116.

    WANG Xu, JIA Wenfeng, REN Qianqian, et al. Development and evaluation of a new emulsified gelled acid[J]. Drilling Fluid & Completion Fluid, 2017, 34(5): 111–116.
    [20]
    杨方政,李春月,侯帆,等. 延迟交联冻胶酸酸压技术在塔河油田的应用[J]. 化工中间体,2014,10(8):25–30.

    YANG Fangzheng, LI Chunyue, HOU Fan, et al. Delayed crosslinked gel acid fracturing technology in Tahe Oilfield[J]. Chemical Intermediates, 2014, 10(8): 25–30.
    [21]
    贾光亮,蒋新立,李晔旻. 塔河油田超深井压裂裂缝自生酸酸化研究及应用[J]. 复杂油气藏,2017,10(2):73–75.

    JIA Guangliang, JIANG Xinli, LI Yemin. Research and application of self-generating acid fracturing technology in Tahe Oilfield[J]. Complex Hydrocarbon Reservoirs, 2017, 10(2): 73–75.
    [22]
    刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术,2017,45(1):104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.
    [23]
    刘芳慧,张世昆,曹耐. 强渗透缓速酸液体系研究与评价[J]. 钻井液与完井液,2022,39(3):365–372.

    LIU Fanghui, ZHANG Shikun, CAO Nai. Study and evaluation of highly permeable retarded acids[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 365–372.
    [24]
    薛衡,何冰,蒋利平,等. 碳酸盐岩储层水平井靶向酸化研究及应用[J]. 西南石油大学学报(自然科学版),2022,44(4):121–128.

    XUE Heng, HE Bing, JIANG Liping, et al. Research and application of targeted acidizing tech in horizontal well of carbonate reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 121–128.
    [25]
    王琨,詹立,苟波. 高温致密碳酸盐岩与胶凝酸酸岩反应速率测试方法研究[J]. 钻采工艺,2018,41(3):41–44.

    WANG Kun, ZHAN Li, GOU Bo. Method to test rock-acid reaction rate between gelled acid and high temperature tight carbonate rocks[J]. Drilling & Production Technology, 2018, 41(3): 41–44.
    [26]
    张忆南,梁利喜,刘向君,等. 全直径碳酸盐岩岩心孔隙空间重构方法[J]. 断块油气田,2021,28(3):346–351.

    ZHANG Yinan, LIANG Lixi, LIU Xiangjun, et al. Pore-space reconstruction method research for full-diameter carbonate cores[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 346–351.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return