Citation: | KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network [J]. Petroleum Drilling Techniques,2023, 51(2):116-124. DOI: 10.11911/syztjs.2023047 |
Azimuthal electromagnetic wave logging while drilling (LWD) tool plays an important role in geosteering and reservoir evaluation, but its measurement response is not intuitive. So inversion method is needed to obtain formation information. Traditional inversion methods (i.e., Gauss-Newton method, random inversion method, etc.) are difficult to meet the requirements of real-time inversion due to the slow calculation speed. In this paper, a new inversion method based on a long and short-term memory (LSTM) artificial neural network was proposed to obtain formation resistivity. Firstly, the forward algorithm was established based on the method of generalized reflection coefficient to produce the sample set. Then, the LSTM neural network model was built, and it was trained and tested on the sample set. The appropriate network parameters were optimized by the traversal method. Finally, the resistivity inversion was completed on the test set. The inverted resistivity was compared with the forward resistivity, and the inversion time and relative error were compared as well. Meanwhile, the anti-noise property of the model is verified by adding white noise to the test set. The results show that the model can accurately and rapidly invert formation resistivity and can invert data containing noise, indicating that the model has good robustness. This inversion method can provide a new idea and direction for logging data processing.
[1] |
NIE Xiaochun, YUAN Ning, LIU C R. Simulation of LWD tool response using a fast integral equation method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 72–81. doi: 10.1109/TGRS.2009.2027112
|
[2] |
LEE H O, TEIXEIRA F L, SAN MARTIN L E, et al. Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic earth formations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 727–735. doi: 10.1109/TGRS.2011.2162736
|
[3] |
吴柏志,杨震,郭同政,等. 多尺度随钻方位电磁波测井系统响应特征研究[J]. 石油钻探技术,2022,50(6):7–13. doi: 10.11911/syztjs.2022107
WU Baizhi,YANG Zhen,GUO Tongzheng,et al. Response characteristics of logging while drilling system with multi-scale azimuthal electromagnetic waves[J]. Petroleum Drilling Techniques, 2022, 50(6): 7–13. doi: 10.11911/syztjs.2022107
|
[4] |
刘天淋,岳喜洲,李国玉,等. 超深探测随钻电磁波测井地质信号特性研究[J]. 石油钻探技术,2022,50(6):41–48. doi: 10.11911/syztjs.2022110
LIU Tianlin, YUE Xizhou, LI Guoyu, et al. Study over the geo-signal properties of ultra-deep electromagnetic wave logging while drilling[J]. Petroleum Drilling Techniques, 2022, 50(6): 41–48. doi: 10.11911/syztjs.2022110
|
[5] |
WANG Gongli, BARBER T, WU P, et al. Fast inversion of triaxial induction data in dipping crossbedded formations[J]. Geophysics, 2017, 82(2): D31–D45. doi: 10.1190/geo2015-0610.1
|
[6] |
杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025
YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025
|
[7] |
JIN Yuchen, SHEN Qiuyang, WU Xuqing, et al. A physics-driven deep-learning network for solving nonlinear inverse problems[J]. Petrophysics, 2020, 61(1): 86–98.
|
[8] |
ZHU Gaoyang, GAO Muzhi, KONG Fanmin, et al. A fast inversion of induction logging data in anisotropic formation based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(12): 2050–2054. doi: 10.1109/LGRS.2019.2961374
|
[9] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[10] |
ZHU Xiaoyu, LI Jincai, ZHU Min, et al. An evaporation duct height prediction method based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1307–1311. doi: 10.1109/LGRS.2018.2842235
|
[11] |
ARAYA-POLO M, JENNINGS J, ADLER A, et al. Deep-learning tomography[J]. The Leading Edge, 2018, 37(1): 58–66. doi: 10.1190/tle37010058.1
|
[12] |
OH S, NOH K, YOON D, et al. Salt delineation from electromagnetic data using convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 519–523. doi: 10.1109/LGRS.2018.2877155
|
[13] |
COLOMBO D, TURKOGLU E, LI Weichang, et al. Physics-driven deep-learning inversion with application to transient electromagnetics[J]. Geophysics, 2021, 86(3): E209–E224. doi: 10.1190/geo2020-0760.1
|
[14] |
JIN Yuchen, WU Xuqing, CHEN Jiefu, et al. Using a physics-driven deep neural network to solve inverse problems for LWD azimuthal resistivity measurements[R]. SPWLA-2019-IIII, 2019.
|
[15] |
HU Yanyan, GUO Rui, JIN Yuchen, et al. A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems[J]. IEEE Transactions on Geo-science and Remote Sensing, 2020, 58(11): 8013–8025. doi: 10.1109/TGRS.2020.2986000
|
[16] |
SHAHRIARI M, PARDO D, PICON A, et al. A deep learning approach to the inversion of borehole resistivity measurements[J]. Computational Geosciences, 2020, 24(3): 971–994. doi: 10.1007/s10596-019-09859-y
|
[17] |
NOH K, TORRES-VERDÍN C, PARDO D. Real-time 2.5D inversion of LWD resistivity measurements using deep learning for geosteering applications across faulted formations[R]. SPWLA-2021 − 0104, 2021.
|
[18] |
倪卫宁,张晓彬,万勇,等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术,2017,45(2):115–120.
NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techni-ques, 2017, 45(2): 115–120.
|
[19] |
杨震,肖红兵,李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术,2017,45(4):115–120. doi: 10.11911/syztjs.201704020
YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120. doi: 10.11911/syztjs.201704020
|
[20] |
杨震,文艺,肖红兵. 随钻方位电磁波仪器探测电阻率各向异性新方法[J]. 石油钻探技术,2016,44(3):115–120. doi: 10.11911/syztjs.201603021
YANG Zhen, WEN Yi, XIAO Hongbing. A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115–120. doi: 10.11911/syztjs.201603021
|
[21] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735
|
1. |
王春伟,杜焕福,董佑桓,孙鑫,侯文辉,艾亚博,杜淑艳,刘桂华,柳启明. 泌阳凹陷页岩油水平井随钻定测录导一体化模式探索. 断块油气田. 2024(03): 424-431 .
![]() | |
2. |
秦文娟,康正明,张意,仵杰,倪卫宁. 模块化随钻电磁波测井仪器结构对测量信号的影响. 石油钻探技术. 2024(03): 137-145 .
![]() | |
3. |
高泽林,王佳琦,张启子. 智能化测井解释软件平台的架构研究. 石油钻探技术. 2024(04): 128-134 .
![]() | |
4. |
吴泽兵,袁若飞,张文溪,刘家乐. 基于多目标遗传算法的PDC复合片交界结构优化设计. 石油钻探技术. 2024(04): 24-33 .
![]() | |
5. |
赵宁,申松宁,李宁,胡海涛,齐超,秦策. 基于物理驱动的超深随钻方位电磁波测井深度学习反演. 石油地球物理勘探. 2024(05): 1069-1079 .
![]() | |
6. |
盛茂,范龙昂,张帅,张彦军,李川,田守嶒. 数据–知识混合驱动的压裂球座坐封有效性智能诊断方法. 石油钻探技术. 2024(05): 76-81 .
![]() |