GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045
Citation: GENG Yudi, JIANG Tingxue, LIU Zhiyuan, et al. Mechanism of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs [J]. Petroleum Drilling Techniques,2023, 51(2):81-89. DOI: 10.11911/syztjs.2023045

Mechanism of Hydraulic Fracture Propagation in Deep Fracture-Cavity Carbonate Reservoirs

More Information
  • Received Date: May 14, 2022
  • Revised Date: March 19, 2023
  • Available Online: March 26, 2023
  • In order to understand the law of hydraulic fracture propagation in deep fracture-cavity carbonate reservoirs during the fracturing process, a mathematical model of hydraulic fracture propagation suitable for fracture-cavity reservoirs was established based on elastic mechanics, fracture mechanics, and fluid-solid coupling theory. On the basis of the model, a numerical simulation was carried out to analyze the interaction law between hydraulic fractures and fracture-cavity reservoirs during propagation, and the technical applicability of “cave connection by natural fractures” was discussed thoroughly. The numerical simulation results show that the locally induced stress field around the fracture-cavity reservoir will be affected when natural fractures develop around the cave, which makes it easier for hydraulic fractures to connect with the fracture-cavity reservoir. The injection of low-viscosity fracturing fluid at large displacement or high-viscosity fracturing fluid at medium and small displacement can only connect to caves that have a small angle with the initial hydraulic fracture propagation direction, while for caves with large angles, forced steering technology should be considered for connection. The results show that according to the distribution relationship between wellbore and fracture-cavity reservoirs, three fracture-cavity reservoir connection modes including direct connection, directional connection, and seam connection can be achieved by using the technique of “cave connection by natural fractures”, which significantly improves the production range of reserves.

  • [1]
    张宁宁,何登发,孙衍鹏,等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探,2014,19(6):54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007

    ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54–65. doi: 10.3969/j.issn.1672-7703.2014.06.007
    [2]
    胡文革. 塔里木盆地塔河油田潜山区古岩溶缝洞类型及其改造作用[J]. 石油与天然气地质,2022,43(1):43–53.

    HU Wenge. Paleokarst fracture-vug types and their reconstruction in buried hill area, Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 43–53.
    [3]
    王小垚,曾联波,魏荷花,等. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展,2018,33(8):818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818

    WANG Xiaoyao, ZENG Lianbo, WEI Hehua, et al. Research progress of the fractured-vuggy reservoir zones in carbonate reser-voir[J]. Advances in Earth Science, 2018, 33(8): 818–832. doi: 10.11867/j.issn.1001-8166.2018.08.0818
    [4]
    耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010

    GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010
    [5]
    李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xingyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074
    [6]
    陈志海,戴勇. 深层碳酸盐岩储层酸压工艺技术现状与展望[J]. 石油钻探技术,2005,33(1):58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018

    CHEN Zhihai, DAI Yong. Actuality and outlook of acid-fracturing technique in deep carbonate formation[J]. Petroleum Drilling Techniques, 2005, 33(1): 58–62. doi: 10.3969/j.issn.1001-0890.2005.01.018
    [7]
    李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45–57. doi: 10.3969/j.issn.1672-7703.2020.01.005
    [8]
    蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei oil and gas field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
    [9]
    牟建业,张宇,牟善波,等. 缝洞型碳酸盐岩储层酸液流动反应建模[J]. 石油科学通报,2021,6(3):465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037

    MOU Jianye, ZHANG Yu, MOU Shanbo, et al. Modeling of acid-rock interaction in naturally fractured vuggy carbonate reservoirs[J]. Petroleum Science Bulletin, 2021, 6(3): 465–473. doi: 10.3969/j.issn.2096-1693.2021.03.037
    [10]
    王燚钊,侯冰,张鲲鹏,等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报,2020,5(3):412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035

    WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035
    [11]
    MEHRJOO H, NOROUZI-APOURVARI S, JALALIFAR H, et al. Experimental study and modeling of final fracture conductivity during acid fracturing[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109192. doi: 10.1016/j.petrol.2021.109192
    [12]
    DAI Y, HOU B, ZHOU C, et al. Interaction law between natural fractures-vugs and acid-etched fracture during steering acid fracturing in carbonate reservoirs[J]. Geofluids, 2021, 2021: 6649874.
    [13]
    CHENG L, LUO Z, YU Y, et al. Study on the interaction mechanism between hydraulic fracture and natural karst cave with the extended finite element method[J]. Engineering Fracture Mechanics, 2019, 222: 106680. doi: 10.1016/j.engfracmech.2019.106680
    [14]
    ZHAO H, XIE Y, ZHAO L, et al. Simulation of mechanism of hydraulic fracture propagation in fracture-cavity reservoirs[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 814–827. doi: 10.1007/s10553-020-01096-9
    [15]
    赵海洋,刘志远,唐旭海,等. 缝洞型碳酸盐岩储层循缝找洞压裂技术[J]. 石油钻采工艺,2021,43(1):89–96. doi: 10.13639/j.odpt.2021.01.014

    ZHAO Haiyang, LIU Zhiyuan, TANG Xuhai, et al. Fracturing technology of searching for vugs along fractures in fractured-vuggy carbonate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(1): 89–96. doi: 10.13639/j.odpt.2021.01.014
    [16]
    LIU Z, TANG X, TAO S, et al. Mechanism of connecting natural caves and wells through hydraulic fracturing in fracture-cavity reservoirs[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5511–5530. doi: 10.1007/s00603-020-02225-w
    [17]
    HOU B, DAI Y, ZHOU C, et al. Mechanism study on steering acid fracture initiation and propagation under different engineering geological conditions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 1–14.
    [18]
    KOLAWOLE O, ISPAS I. Interaction between hydraulic fractures and natural fractures: current status and prospective directions[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1613–1634. doi: 10.1007/s13202-019-00778-3
    [19]
    LA B V, BEZERRA F H R, SOUZA V H P, et al. High-permeability zones in folded and faulted silicified carbonate rocks–implications for karstified carbonate reservoirs[J]. Marine and Petroleum Geology, 2021, 128: 105046. doi: 10.1016/j.marpetgeo.2021.105046
  • Related Articles

    [1]YIN Shuai, ZHAO Junhui, LIU Ping, SHEN Zhicheng. Opening Conditions and Extension Law of Natural and Hydraulic Fractures in Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(3): 98-105. DOI: 10.11911/syztjs.2024022
    [2]DAI Yifan, HOU Bing, LIAO Zhihao. Simulation of Hydraulic Fracturing in Deep Hot Dry Rock Reservoir Based on Phase-Field Method[J]. Petroleum Drilling Techniques, 2024, 52(2): 229-235. DOI: 10.11911/syztjs.2024047
    [3]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [4]WU Bailie, PENG Chengyong, WU Guang'ai, LOU Yishan, YIN Biao. Effect of Fracability Index on Fracture Propagation: A Case Study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3): 105-112. DOI: 10.11911/syztjs.2023062
    [5]WU Zhiying, HU Yafei, JIANG Tingxue, ZHANG Baoping, YAO Yiming, DONG Ning. Study on Propagation and Diversion Characteristics of Hydraulic Fractures in Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(4): 90-96. DOI: 10.11911/syztjs.2022084
    [6]FANG Haoqing, ZHAO Bing, WANG Wenzhi, ZHOU Zhou. Simulation Study on the Range of Diversion in Targeted Fracturing of Prefabricated Fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97-103. DOI: 10.11911/syztjs.2019048
    [7]LI Xiaoyi, AI Shuang, CHENG Guangming, ZHANG Jie, WU Junxia. Numerical Simulation of Fishbone Flexible Pipes in Fractured Vuggy Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2017, 45(3): 102-106. DOI: 10.11911/syztjs.201703018
    [8]LIU Jiankun, JIANG Tingxue, ZHOU Linbo, ZHOU Jun, WU Zhiying, WU Qinxuan. Multi-Stage Alternative Acid Fracturing Technique in Carbonate Reservoirs Stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104-111. DOI: 10.11911/syztjs.201701018
    [9]Zhang Hongfang. Research on Discrete Numerical Simulation of Fracture-Cave Unit in Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2015, 43(2): 71-77. DOI: 10.11911/syztjs.201502013
    [10]Yan Fengming, Kang Yili, Sun Kai, Zhang Jinshun, Wang Hongwei, Du Chunchao. The Temporary Sealing Formula for Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 47-51. DOI: 10.3969/j.issn.1001-0890.2012.01.010

Catalog

    Article Metrics

    Article views (292) PDF downloads (81) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return