Citation: | CAI Jiguang, WANG Chuan, FANG Haoqing, et al. Evaluation method for the conductivity of full-length sand-packed acid-etched fractures [J]. Petroleum Drilling Techniques,2023, 51(1):78-85. DOI: 10.11911/syztjs.2023015 |
In order to evaluate the influence of proppant on the conductivity of acid-etched fractures during the composite acid fracturing with sand and determine the timing of adding sand, an evaluation method for the conductivity of sand-packed acid-etched fractures at full-length scale was proposed. The Ordovician reservoir in Shunbei Oilfield was taken as an example. Firstly, acid fracturing numerical simulation was used to determine the key test conditions such as temperature, mass fraction of acid solution, and sand concentration at different positions of fractures under reservoir conditions, and then the conductivity of sand-packed acid-etched fractures at different positions was tested. The results showed that the impact of reaction temperature at different positions of the fractures on the acid-etching effect was greater than that of the mass fraction of acid solution, which led to the best acid-etching effect in the middle of the fractures, followed by the fracture tail, and the fracture inlet was the worst. When the closure stress was greater than 60 MPa, sand filling in the middle and tail of the acid-etched fractures could significantly improve the conductivity. This method was applied in Well S3 to determine the sand addition during the metaphase of acid fracturing, so as to improve the conductivity in the middle and tail of the fractures. After the stimulation, the stable daily oil production was increased by 40% compared with the adjacent wells, and the stable production time was extended by 57.8%. The evaluation method for the conductivity of full-length sand-packed acid-etched fractures overcomes the difficulty to evaluate the conductivity of fractures with the order of 100 meters under reservoir conditions which is a limitation for conventional tests and provides a new method for determining the timing of adding sand in composite acid-fracturing.
[1] |
马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发,2022,49(1):1–17. doi: 10.11698/PED.2022.01.01
MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1): 1–17. doi: 10.11698/PED.2022.01.01
|
[2] |
吕海涛,韩俊,张继标,等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质,2021,43(1):14–22. doi: 10.11781/sysydz202101014
LYU Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei Area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14–22. doi: 10.11781/sysydz202101014
|
[3] |
蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术,2019,47(3):140–147. doi: 10.11911/syztjs.2019058
JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058
|
[4] |
李新勇,李骁,赵兵,等. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术,2022,50(2):92–98. doi: 10.11911/syztjs.2021068
LI Xinyong, LI Xiao, ZHAO Bing, et al. Key technologies for large-scale acid fracturing of ultra-deep fault-karst carbonate reservoirs with ultra-high temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92–98. doi: 10.11911/syztjs.2021068
|
[5] |
赵兵,李春月,房好青,等. 顺北断溶体油藏重复酸压时机优化研究[J]. 非常规油气,2021,8(5):100–105. doi: 10.19901/j.fcgyq.2021.05.14
ZHAO Bing, LI Chunyue, FANG Haoqing, et al. Optimization of repeated acid fracturing timing in Shunbei fault solution reser-voir[J]. Unconventional Oil & Gas, 2021, 8(5): 100–105. doi: 10.19901/j.fcgyq.2021.05.14
|
[6] |
曲占庆,林强,郭天魁,等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田,2019,26(4):533–536.
QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 533–536.
|
[7] |
周佳佳,邹洪岚,朱大伟,等. 低弹性模量碳酸盐岩储层裂缝导流能力实验研究[J]. 石油钻采工艺,2020,42(6):752–756. doi: 10.13639/j.odpt.2020.06.014
ZHOU Jiajia, ZOU Honglan, ZHU Dawei, et al. Experimental study on the fracture conductivity in the carbonate reservoirs with low elastic modulus[J]. Oil Drilling & Production Technology, 2020, 42(6): 752–756. doi: 10.13639/j.odpt.2020.06.014
|
[8] |
吴月先,马发明,赵业荣,等. 酸化与加砂压裂协同作业技术及其优势[J]. 石油钻探技术,2009,37(1):69–72. doi: 10.3969/j.issn.1001-0890.2009.01.016
WU Yuexian, MA Faming, ZHAO Yerong, et al. Acidizing and sand fracturing technique and its advantages[J]. Petroleum Drilling Techniques, 2009, 37(1): 69–72. doi: 10.3969/j.issn.1001-0890.2009.01.016
|
[9] |
杨菁,刘辉,宁超众. 低渗孔隙型碳酸盐岩油藏储层改造适应性及优化设计[J]. 石油科学通报,2022,7(2):204–212. doi: 10.3969/j.issn.2096-1693.2022.02.018
YANG Jing, LIU Hui, NING Chaozhong. Adaptability and optimal design of stimulation measures of low permeability carbonate reservoirs[J]. Petroleum Science Bulletin, 2022, 7(2): 204–212. doi: 10.3969/j.issn.2096-1693.2022.02.018
|
[10] |
朱利勇. 碳酸盐岩水力加砂压裂与酸压复合改造技术可行性论证[D]. 成都: 西南石油大学, 2018.
ZHU Liyong. Feasibility demonstration of hydraulic fracturing and acid fracturing composite stimulation technique in carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2018.
|
[11] |
余芳,徐克彬,郑立军,等. 杨税务深潜山AT3井复合酸压改造工艺技术[J]. 钻井液与完井液,2018,35(6):114–121. doi: 10.3969/j.issn.1001-5620.2018.06.021
YU Fang, XU Kebin, ZHENG Lijun, et al. Compounding acid-fracturing techniques for well AT3 in Yangshuiwu deep buried hill structure[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 114–121. doi: 10.3969/j.issn.1001-5620.2018.06.021
|
[12] |
耿宇迪,周林波,王洋,等. 超深碳酸盐岩复合高导流酸压技术[J]. 油气藏评价与开发,2019,9(6):56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010
GENG Yudi, ZHOU Linbo, WANG Yang, et al. High conductivity acid fracturing technology in ultra-deep carbonate reservoir[J]. Reservoir Evaluation and Development, 2019, 9(6): 56–60. doi: 10.3969/j.issn.2095-1426.2019.06.010
|
[13] |
姜浒,陈勉,张广清,等. 碳酸盐岩储层加砂酸压支撑裂缝短期导流能力试验[J]. 中国石油大学学报(自然科学版),2009,33(4):89–92.
JIANG Hu, CHEN Mian, ZHANG Guangqing, et al. Experiment on short-term conductivity of sand-adding acid-fracturing propping fractures in carbonate reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4): 89–92.
|
[14] |
ZHANG Lufeng, ZHOU Fujian, MOU Jianye, et al. A new method to improve long-term fracture conductivity in acid fracturing under high closure stress[J]. Journal of Petroleum Science and Engineering, 2018, 171: 760–770. doi: 10.1016/j.petrol.2018.07.073
|
[15] |
周珺,周林波,蒋廷学,等. 超深碳酸盐岩储层通道加砂酸压导流能力实验[J]. 成都理工大学学报(自然科学版),2019,46(2):221–226.
ZHOU Jun, ZHOU Linbo, JIANG Tingxue, et al. Experimental study on the fracture conductivity of ultra-deep carbonate reservoirs by channel sanding acid fracturing[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2019, 46(2): 221–226.
|
[16] |
GUO Jianchun, LIU Zhuang, GOU Bo, et al. Study of wellbore heat transfer considering fluid rheological effects in deep well aci-dizing[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107171. doi: 10.1016/j.petrol.2020.107171
|
[17] |
王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998.
WANG Hongxun, ZHANG Shicheng. Numerical calculation method for hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998.
|
[18] |
庞铭,陈华兴,唐洪明,等. 基于裂缝重构评价酸蚀对碳酸盐岩应力敏感性的影响[J]. 特种油气藏,2022,29(1):107–113. doi: 10.3969/j.issn.1006-6535.2022.01.016
PANG Ming, CHEN Huaxing, TANG Hongming, et al. Evaluation of the effect of acid erosion on stress sensitivity of carbonate rocks based on fracture reconstruction[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 107–113. doi: 10.3969/j.issn.1006-6535.2022.01.016
|
[19] |
张雄,李春月,周舟,等. 精细化壁面重构下的酸蚀裂缝导流能力研究[J]. 石油科学通报,2022,7(2):213–221. doi: 10.3969/j.issn.2096-1693.2022.02.019
ZHANG Xiong, LI Chunyue, ZHOU Zhou, et al. Study on the conductivity of acid etched fracture under the precise reconstruction of fracture surface[J]. Petroleum Science Bulletin, 2022, 7(2): 213–221. doi: 10.3969/j.issn.2096-1693.2022.02.019
|
[20] |
王燚钊,侯冰,张鲲鹏,等. 碳酸盐岩储层酸压室内真三轴物理模拟实验[J]. 石油科学通报,2020,5(3):412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035
WANG Yizhao, HOU Bing, ZHANG Kunpeng, et al. Laboratory true triaxial acid fracturing experiments for carbonate reservoirs[J]. Petroleum Science Bulletin, 2020, 5(3): 412–419. doi: 10.3969/j.issn.2096-1693.2020.03.035
|
[21] |
苟波,李骁,马辉运,等. 水力裂缝形貌对酸刻蚀行为及导流能力影响[J]. 西南石油大学学报(自然科学版),2019,41(3):80–90.
GOU Bo, LI Xiao, MA Huiyun, et al. Effects of morphology of hydraulic fractures on acid etching behaviors and fluid diversion capacity[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(3): 80–90.
|
1. |
刘成峰,吴荣基,许智贤,伍中校,郑祺. 基于AR技术的现场施工自动监控系统. 自动化技术与应用. 2024(06): 166-170 .
![]() | |
2. |
田立栋,刘正. 神东井下紧急撤人综合指挥指引系统的设计与应用. 陕西煤炭. 2023(05): 166-170 .
![]() | |
3. |
田颖,马梦娜. 矿区玻璃幕墙安全监测与预警系统设计. 能源与环保. 2022(04): 234-238+268 .
![]() | |
4. |
刘伟,王小鹏,王旭,张廷,白文雄,郭先敏. 井下动力学测量工具研究现状及发展建议. 石油矿场机械. 2022(03): 20-32 .
![]() | |
5. |
夏丽珍. VR虚拟实景煤矿矿井逃生系统设计实现. 煤炭技术. 2022(07): 175-178 .
![]() | |
6. |
王敏生. 沿钻柱测量技术及其发展方向. 石油钻探技术. 2022(04): 52-58 .
![]() |