LIU Huanle, XUE Shifeng, SUN Zhiyang, et al. Structural parameter optimization and field test of a jetting and helical combination drain tool [J]. Petroleum Drilling Techniques,2023, 51(3):90-96. DOI: 10.11911/syztjs.2022116
Citation: LIU Huanle, XUE Shifeng, SUN Zhiyang, et al. Structural parameter optimization and field test of a jetting and helical combination drain tool [J]. Petroleum Drilling Techniques,2023, 51(3):90-96. DOI: 10.11911/syztjs.2022116

Structural Parameter Optimization and Field Test of a Jetting and Helical Combination Drain Tool

More Information
  • Received Date: August 11, 2022
  • Revised Date: March 21, 2023
  • Available Online: March 31, 2023
  • In order to reduce the pressure drop of production fluid in the wellbore and make full use of the energy of gas wells with fluid accumulation for low-cost drainage and gas recovery, a jetting and helical combination drain tool was developed. Based on the design of the tool structure, the performance test system of the tool was built.The simulated wellbore pressure drops at different gas flow rates with different structural parameters were tested, and the single factor analysis and orthogonal test analysis of the structural parameters of the tool were carried out. In addition, the optimal structural parameter combinations of the tool at different conditions were obtained. The results show that the main structural parameters of the tool affect the pressure drop of the fluid in the wellbore. Moreover, gas wells with different production rate require tools with different structural parameter combinations to minimize the wellbore pressure drop. After the optimized tool was run in Well A, the cumulative gas production increased by an average of 20.95%, and the cumulative water production increased by an average of 21.59% over a same production period. The drainage stimulation effect of the tool was demonstrated. The successful application of this tool provides a new technical method for low-cost drainage and gas recovery in gas wells with fluid accumulation.

  • [1]
    王辉,周朝,周忠亚,等. 页岩气井排水采气工艺综合优选方法[J]. 钻采工艺,2022,45(2):154–159. doi: 10.3969/J.ISSN.1006-768X.2022.02.28

    WANG Hui, ZHOU Chao, ZHOU Zhongya, et al. Comprehensive optimal selection method of drainage gas recovery technology for shale gas horizontal wells[J]. Drilling & Production Technology, 2022, 45(2): 154–159. doi: 10.3969/J.ISSN.1006-768X.2022.02.28
    [2]
    周朝,何祖清,付道明,等. 页岩气水平井全井筒临界携液流量模型[J]. 石油钻采工艺,2021,43(6):791–797. doi: 10.13639/j.odpt.2021.06.016

    ZHOU Chao, HE Zuqing, FU Daoming, et al. Full-hole critical liquid carrying flow model of shale-gas horizontal well[J]. Oil Dril-ling & Production Technology, 2021, 43(6): 791–797. doi: 10.13639/j.odpt.2021.06.016
    [3]
    蔡萌,王羕,孙春龙,等. 新型井下轴流式入口旋流器分析及优选[J]. 石油钻采工艺,2022,44(5):594–599.

    CAI Meng, WANG Yang, SUN Chunlong, et al. Analysis and optimization of a novel downhole axial flow inlet hydrocyclone[J]. Oil Drilling & Production Technology, 2022, 44(5): 594–599.
    [4]
    周舰. 低压低产气井井下智能机器人排水采气技术[J]. 石油钻探技术,2020,48(3):85–89. doi: 10.11911/syztjs.2020059

    ZHOU Jian. Drainage gas recovery technique with downhole intelligent robots in low pressure and low production gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 85–89. doi: 10.11911/syztjs.2020059
    [5]
    SIMPSON D A. Vortex flow technology finding new applica-tions[J]. Rocky Mountain Oil Journal, 2003, 83(45): 113103.
    [6]
    黄艳,佘朝毅,钟晓瑜,等. 国外排水采气工艺技术现状及发展趋势[J]. 钻采工艺,2005,28(4):57–60. doi: 10.3969/j.issn.1006-768X.2005.04.020

    HUANG Yan, SHE Chaoyi, ZHONG Xiaoyu, et al. Resent situation and development tendency on the foreign technology of dewatering gas production[J]. Drilling & Production Technology, 2005, 28(4): 57–60. doi: 10.3969/j.issn.1006-768X.2005.04.020
    [7]
    杨旭东,卫亚明,肖述琴,等. 井下涡流工具排水采气在苏里格气田探索研究[J]. 钻采工艺,2013,36(6):125–127. doi: 10.3969/J.ISSN.1006-768X.2013.06.37

    YANG Xudong, WEI Yaming, XIAO Shuqin, et al. Research of downhole vortex dewatering gas recovery in Sulige Gas Field[J]. Drilling & Production Technology, 2013, 36(6): 125–127. doi: 10.3969/J.ISSN.1006-768X.2013.06.37
    [8]
    谢川. 川西产水气井井下涡流工具模拟与优化[D]. 成都: 西南石油大学, 2018.

    XIE Chuan. Simulation and optimization of downhole vortex tools for water-gas wells in western Sichuan[D]. Chengdu: Southwest Petroleum University, 2018.
    [9]
    杨涛,余淑明,杨桦,等. 气井涡流排水采气新技术及其应用[J]. 天然气工业,2012,32(8):63–66. doi: 10.3787/j.issn.1000-0976.2012.08.013

    YANG Tao, YU Shuming, YANG Hua, et al. A new technology of vortex dewatering gas recovery in gas wells and its application[J]. Natural Gas Industry, 2012, 32(8): 63–66. doi: 10.3787/j.issn.1000-0976.2012.08.013
    [10]
    叶长青,熊杰,康琳洁,等. 川渝气区排水采气工具研制新进展[J]. 天然气工业,2015,35(2):54–58. doi: 10.3787/j.issn.1000-0976.2015.02.008

    YE Changqing, XIONG Jie, KANG Linjie, et al. New progress in the R & D of water drainage gas recovery tools in Sichuan and Chongqing gas zones[J]. Natural Gas Industry, 2015, 35(2): 54–58. doi: 10.3787/j.issn.1000-0976.2015.02.008
    [11]
    郭秀庭,强华,秦晓东,等. 旋流排水采气技术研究[J]. 油气井测试,2015,24(3):68–71. doi: 10.3969/j.issn.1004-4388.2015.03.020

    GUO Xiuting, QIANG Hua, QIN Xiaodong, et al. Research on vortex drainage gas recovery technology[J]. Well Testing, 2015, 24(3): 68–71. doi: 10.3969/j.issn.1004-4388.2015.03.020
    [12]
    李隽,李楠,李佳宜,等. 涡流排水采气技术数值模拟研究[J]. 石油钻采工艺,2013,35(6):65–68. doi: 10.13639/j.odpt.2013.06.002

    LI Juan, LI Nan, LI Jiayi, et al. Numerical simulation research on eddy current drainage gas recovery technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 65–68. doi: 10.13639/j.odpt.2013.06.002
    [13]
    冯翠菊,王春生,张黉. 天然气井下涡流工具排液效果影响因素分析[J]. 石油机械,2013,41(1):78–81. doi: 10.3969/j.issn.1001-4578.2013.01.019

    FENG Cuiju, WANG Chunsheng, ZHANG Hong. Influencing factor analysis of the liquid discharge effect of downhole vortex tool in natural gas wells[J]. China Petroleum Machinery, 2013, 41(1): 78–81. doi: 10.3969/j.issn.1001-4578.2013.01.019
    [14]
    陈杰,杨志,耿凤康,等. 井下涡流工具结构参数优化[J]. 科学技术与工程,2020,20(30):12385–12396. doi: 10.3969/j.issn.1671-1815.2020.30.019

    CHEN Jie, YANG Zhi, GENG Fengkang, et al. Structural parameter optimization of downhole vortex tool[J]. Science Technology and Engineering, 2020, 20(30): 12385–12396. doi: 10.3969/j.issn.1671-1815.2020.30.019
    [15]
    吴丹,颜廷俊,谢双喜,等. 气井涡流排液采气工具参数仿真及结构优化[J]. 石油机械,2014,42(8):111–115. doi: 10.3969/j.issn.1001-4578.2014.08.026

    WU Dan, YAN Tingjun, XIE Shuangxi, et al. Numerical simulation and structural optimization of vortex tool for liquid discharge in gas well[J]. China Petroleum Machinery, 2014, 42(8): 111–115. doi: 10.3969/j.issn.1001-4578.2014.08.026
    [16]
    陈德春,姚亚,韩昊,等. 气井涡流携液机理和携液效率数值模拟研究[J]. 石油机械,2015,43(9):91–94. doi: 10.16082/j.cnki.issn.1001-4578.2015.09.021

    CHEN Dechun, YAO Ya, HAN Hao, et al. Numerical simulation on fluid-carrying mechanism and efficiency of vortex flow in gas wells[J]. China Petroleum Machinery, 2015, 43(9): 91–94. doi: 10.16082/j.cnki.issn.1001-4578.2015.09.021
    [17]
    陈德春,姚亚,韩昊,等. 气井涡流工具排液效果及结构参数优化实验[J]. 大庆石油地质与开发,2016,35(4):109–112. doi: 10.3969/J.ISSN.1000-3754.2016.04.021

    CHEN Dechun, YAO Ya, HAN Hao, et al. Optimizing experiment on the liquid discharge effects and its structural parameters for gas-well vortex tool[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 109–112. doi: 10.3969/J.ISSN.1000-3754.2016.04.021
    [18]
    于淑珍,胡康,宋渊娟,等. 涡流排水采气技术机理研究及应用[J]. 钻采工艺,2015,38(3):49–51.

    YU Shuzhen, HU Kang, SONG Yuanjuan, et al. Mechanism research and application of vortex drainage gas recovery techno-logy[J]. Drilling & Production Technology, 2015, 38(3): 49–51.
    [19]
    徐建宁,邵乐,梁慧荣,等. 基于正交试验的涡流排水采气影响因素分析[J]. 石油矿场机械,2014,43(11):52–56. doi: 10.3969/j.issn.1001-3482.2014.11.013

    XU Jianning, SHAO Le, LIANG Huirong, et al. Based on orthogonal experiment analysis of factors affecting vortex drainage gas[J]. Oil Field Equipment, 2014, 43(11): 52–56. doi: 10.3969/j.issn.1001-3482.2014.11.013
    [20]
    ALI A J, SCOTT S L, FEHN B. Investigation of new tool to unload liquids from stripper-gas wells[R]. SPE 84136, 2003.
    [21]
    周朝,吴晓东,张同义,等. 排液采气涡流工具结构参数优化实验研究[J]. 石油钻探技术,2018,46(6):105–110. doi: 10.11911/syztjs.2018142

    ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Experimental research for parameter optimization of the vortex tool for drainage gas recovery[J]. Petroleum Drilling Techniques, 2018, 46(6): 105–110. doi: 10.11911/syztjs.2018142
    [22]
    ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Dynamic analysis for two-phase vortex flow and optimization of vortex tools to unload liquid from gas wells[J]. Journal of Petroleum Science and Engineering, 2019, 173: 965–974. doi: 10.1016/j.petrol.2018.10.091
    [23]
    周朝,吴晓东,张同义,等. 井筒两相涡流场液膜动力学分析与涡流工具优化[J]. 西安石油大学学报(自然科学版),2020,35(2):54–59.

    ZHOU Chao, WU Xiaodong, ZHANG Tongyi, et al. Hydrodynamic analysis of liquid film of two-phase vortex flow in wellbore and optimization of vortex tool[J]. Journal of Xi’an Shiyou Univer-sity(Natural Science Edition), 2020, 35(2): 54–59.
    [24]
    宋先知,李嘉成,石宇,等. 多分支井地热系统注采性能室内实验研究[J]. 石油钻探技术,2021,49(1):81–87. doi: 10.11911/syztjs.2021019

    SONG Xianzhi, LI Jiacheng, SHI Yu, et al. Laboratory-scale experimental study on the injection-production performance of a multilateral-well enhanced geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(1): 81–87. doi: 10.11911/syztjs.2021019
    [25]
    叶正荣, 裘智超, 周祥, 等. 克拉2气田排水采气工艺优选及效果分析[J]. 石油钻采工艺, 2022, 44(3): 335-340.

    YE Zhengrong, QIU Zhichao, ZHOU Xiang, et al. Optimization and effect analysis of drainage gas recovery technology in Kela 2 Gas Field[J]. Oil Drilling & Production Technology, 2022, 44(3): 335-340.
    [26]
    李庆东. 试验优化设计[M]. 重庆: 西南师范大学出版社, 2016: 36− 74.

    LI Qingdong. Optimum design of experiments[M]. Chongqing: Southwest Normal University Press, 2016: 36−74.
  • Related Articles

    [1]YU Libin, ZHANG Zhigang, JIANG Zhaomin, XU Hui, ZHANG Hongfu, HAN Xurui. Development and Field Testing of the Bionic Peristaltic Drilling Tool[J]. Petroleum Drilling Techniques, 2025, 53(1): 55-59. DOI: 10.11911/syztjs.2024113
    [2]HUANG Feng, CHEN Shichun, LIU Lichao, GUO Chao, LIU Yibin, SHI Yucai. Development and Field Test of BH-VDT3000 Vertical Drilling System[J]. Petroleum Drilling Techniques, 2024, 52(6): 62-68. DOI: 10.11911/syztjs.2024114
    [3]ZHANG Longsheng, WANG Weiheng. Preparation and Field Test of Double-Shell Coated Proppant (DSCP)[J]. Petroleum Drilling Techniques, 2023, 51(1): 91-97. DOI: 10.11911/syztjs.2023014
    [4]LIU Jianhua, LING Wenxue, WANG Heng. Study on Rock Breaking Mechanism and Field Test of Triangular Prismatic PDC Cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46-50. DOI: 10.11911/syztjs.2021040
    [5]LIU Pingquan, LI Leibing, SHI Yucen, HAN Long. Research and Field Test of Electrically Controlled Sidewall Deep Penetrating Perforating Technology[J]. Petroleum Drilling Techniques, 2021, 49(3): 55-61. DOI: 10.11911/syztjs.2021055
    [6]SU Zhenguo, TANG Zhijun. The Design and Field Testing of Two-Stage and Two-Speed Drilling Tools[J]. Petroleum Drilling Techniques, 2019, 47(1): 59-64. DOI: 10.11911/syztjs.2019010
    [7]YANG Haibo, HOU Ting, FENG Dejie, TENG Zhaozheng, WU Liugen. Research and Field Test of Non-Drilling Plug Expandable Casing Patching Technology[J]. Petroleum Drilling Techniques, 2017, 45(5): 73-77. DOI: 10.11911/syztjs.201705013
    [8]ZHENG Xiaozhi, GU Lei, MA Lanrong, ZHANG Guoan. Performance and Field Tests of Rotary Expandable Liner Hanger[J]. Petroleum Drilling Techniques, 2016, 44(3): 55-60. DOI: 10.11911/syztjs.201603010
    [9]Wang Zaiming, Zhu Kuanliang, Feng Jinghai, Wu Yan, Shen Yuanyuan. Development and Field Test of High-Temperature Gel Valve[J]. Petroleum Drilling Techniques, 2015, 43(4): 78-82. DOI: 10.11911/syztjs.201504014
    [10]Liu Gang, Sun Jin, He Baosheng, Tian Ji, Geng Zhanli. Design and Field Test of Surface Monitoring System for Directional Wells Anti-Collision[J]. Petroleum Drilling Techniques, 2012, 40(1): 7-11. DOI: 10.3969/j.issn.1001-0890.2012.01.002
  • Cited by

    Periodical cited type(4)

    1. 耿学礼,郑晓斌,苏延辉,敬倩,史斌,李建. 沁南区域煤层气水平井瓜尔胶钻井液技术. 石油钻探技术. 2023(01): 34-39 . 本站查看
    2. 梁龙军,陈捷,颜智华,高为,易旺,胡海洋. 六盘水煤田大倾角地层煤层气L型水平井钻完井技术. 断块油气田. 2023(04): 616-623 .
    3. 陈天,易远元,李甜甜,兰天庆. 中国煤层气勘探开发现状及关键技术展望. 现代化工. 2023(09): 6-10 .
    4. 张冲. 煤矿区煤层气水平对接井轨迹控制与完井技术研究分析. 中国石油和化工标准与质量. 2022(09): 177-179 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (214) PDF downloads (60) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return