WEI Juanming. Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063
Citation: WEI Juanming. Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. DOI: 10.11911/syztjs.2022063

Research and Application of Slick Water and Gel-Liquid Integrated Fracturing Fluids

More Information
  • Received Date: December 19, 2021
  • Revised Date: March 31, 2022
  • Available Online: May 15, 2022
  • Due to its low viscosity, slick water has limited efficacy in inducing fractures, low carrying capacity for large particles, and a low sand concentration that fails to meet the needs for operation, which limits the efficiency of large-scale fracturing in unconventional reservoirs. Therefore, SFFRE-1, a heat resistant friction reducer dissolves instantly with acrylic acid(AA), acrylamide(AM), 2-acrylamide-2-methylpropyl sulfonic acid(AMPS) and Monomer A as raw materials, was developed by inverse emulsion polymerization. A slick water and gel-liquid integrated fracturing fluid was produced by researching and developing an optimal clay stabilizer and an efficient cleanup agent highly compatible with SFFRE-1. The resulting fracturing fluid can resist temperature as high as 160 °C, and its viscosity can be adjusted from 1 to 120 mPa·s by adjusting added amount of SFFRE-1. In this way, on site mixing and real-time transition between the slick water and gel-liquid in fracturing treatments can be achieved. The fracturing fluid has been applied in shale gas wells in Sichuan Basin and tight oil wells in Shengli Oilfield. It has shown excellent performance in friction reduction and sand carrying: the friction reduction rate reached 86% and the sand concentration was boosted to 43%. The research and field application show that the slick water and gel-liquid integrated fracturing fluid can meet the requirements of large-scale fracturing in unconventional reservoirs.

  • [1]
    贾金亚,魏娟明,贾文峰,等. 页岩气压裂用滑溜水胶液一体化稠化剂研究[J]. 应用化工,2019,48(6):1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001

    JIA Jinya, WEI Juanming, JIA Wenfeng, et al. Research on the integrated thickener of slippery water glue for shale gas fracturing[J]. Applied Chemical Industry, 2019, 48(6): 1247–1250. doi: 10.3969/j.issn.1671-3206.2019.06.001
    [2]
    范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田,2022,29(2):194–198.

    FAN Jiawei, YUAN Ye, LI Shaohua, et al. Geology-engineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 194–198.
    [3]
    杨浩,李新发,陈鑫,等. 低渗透气藏水平井分段压裂分段优化方法研究[J]. 特种油气藏,2021,28(1):125–129.

    YANG Hao, LI Xinfa, CHEN Xin, et al. tudy on staged optimization method of staged fracturing for horizontal wells in low-permeability gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 125–129.
    [4]
    张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103.

    ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.
    [5]
    张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.
    [6]
    慕立俊,吴顺林,徐创朝,等. 基于缝网扩展模拟的致密储层体积压裂水平井产能贡献分析[J]. 特种油气藏,2021,28(2):126–132.

    MU Lijun, WU Shunlin, XU Chuangchao, et al. Analysis on contribution to productivity of SRV-fractured horizontal wells in tight reservoirs based on simulation of fracture network propagation[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 126–132.
    [7]
    王波,王佳,罗兆,等. 水平井段内多簇清水体积压裂技术及现场试验[J]. 断块油气田,2021,28(3):408–413.

    WANG Bo, WANG Jia, LUO Zhao, et al. Multi-cluster clean water volume fracturing technology in horizontal well section and field test[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 408–413.
    [8]
    魏娟明,刘建坤,杜凯,等. 反相乳液型减阻剂及滑溜水体系的研发与应用[J]. 石油钻探技术,2015,43(1):27–32.

    WEI Juanming, LIU Jiankun, DU Kai, et al. Development and application of inverse emulsion drag reducer and slippery water system[J]. Petroleum Drilling Techniques, 2015, 43(1): 27–32.
    [9]
    陈作,曾义金. 深层页岩气分段压裂技术现状及发展建议[J]. 石油钻探技术,2016,44(1):6–11.

    CHEN Zuo, ZENG Yijin. Present situations and prospects of multi-stage fracturing technology for deep shale gas development[J]. Petroleum Drilling Techniques, 2016, 44(1): 6–11.
    [10]
    陈鹏飞,唐永帆,刘友权,等. 页岩气藏滑溜水压裂用降阻剂性能影响因素研究[J]. 石油与天然气化工,2014,43(4):405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013

    CHEN Pengfei, TANG Yongfan, LIU Youquan, et al. Influencing factors of friction reducer in shale slickwater fracturing[J]. Chemical Engineering of Oil and Gas, 2014, 43(4): 405–408. doi: 10.3969/j.issn.1007-3426.2014.04.013
    [11]
    路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
    [12]
    路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
    [13]
    王丽伟,高莹,杨战伟,等. 深层油气用加重滑溜水压裂液体系[J]. 钻井液与完井液,2020,37(6):794–797.

    WANG Liwei,YANG Jingxu, GAO Ying,et al. Study on weighted slick water fracturing fluid for deep buried oil and gas[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 794–797.
    [14]
    李平,樊平天,郝世彦,等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺,2019,41(4):534–540.

    LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534–540.
    [15]
    李远照,李婷,王犁,等. 基于刺激响应策略的可控滑溜水研究[J]. 钻井液与完井液,2020,37(6):784–788.

    LI Yuanzhao, LI Ting, WANG Li, et al. tudy on controllable slick water based on stimulus response strategy[J]. Drilling Fluid & Completion Fluid, 2020, 37(6): 784–788.
    [16]
    CONSTIEN V G, BRANNON H D. Method of hydrating oil based fracturing concentrate and continuous fracturing process using same: US4828034[P]. 1989 − 05 − 09.
    [17]
    AFTEN C W. Study of friction reducers for recycled stimulation fluids in environmentally sensitive regions[R]. SPE 138984, 2010.
    [18]
    蒋廷学,卞晓冰,王海涛,等. 深层页岩气水平井体积压裂技术[J]. 天然气工业,2017,37(1):90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011

    JIANG Tingxue, BIAN Xiaobing, WANG Haitao, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90–96. doi: 10.3787/j.issn.1000-0976.2017.01.011
    [19]
    田福春,刘学伟,张胜传,等. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术,2021,49(4):118–124. doi: 10.11911/syztjs.2021021

    TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, et al. Continuous sand fracturing technology with slick water for continental shale oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118–124. doi: 10.11911/syztjs.2021021
    [20]
    杜凯,黄凤兴,伊卓,等. 页岩气滑溜水压裂用降阻剂研究与应用进展[J]. 中国科学:化学,2014,44(11):1696–1704. doi: 10.1360/N032014-00149

    DU Kai, HUANG Fengxing, YI Zhuo, et al. Recent advances on friction reducer for slickwater fracturing of shale gas reservoirs[J]. Scientia Sinica Chimica, 2014, 44(11): 1696–1704. doi: 10.1360/N032014-00149
    [21]
    张松柏. 苏里格气田压裂液配方优化研究[D]. 青岛: 中国石油大学(华东), 2018.

    ZHANG Songbai. Optimization of fracturing fluid formulation in Sulige Gas Field[D]. Qingdao: China University of Petroleum (East China), 2018.
    [22]
    杜涛,姚奕明,蒋廷学,等. 页岩气压裂用线性胶压裂液性能研究与现场应用[J]. 化学世界,2015,56(11):666–670.

    DU Tao, YAO Yiming, JIANG Tingxue, et al. Study on properties of linear gel fracturing fluid and its field application for shale gas well[J]. Chemical World, 2015, 56(11): 666–670.
    [23]
    魏向博,李小瑞,王磊,等. 疏水缔合压裂液用稠化剂HAP-1 的制备及性能评价[J]. 现代化工,2016,36(10):104–108.

    WEI Xiangbo, LI Xiaorui, WANG Lei, et al. Preparation and performance evaluation of thickener HAP-1 for hydrophobically associating fracturing fluids[J]. Modern Chemical Industry, 2016, 36(10): 104–108.
    [24]
    李延芬,朱荣娇,孙永菊,等. 两性疏水缔合聚丙烯酰胺的合成及性能[J]. 精细化工,2012,29(5):499–504,516.

    LI Yanfen, ZHU Rongjiao, SUN Yongju, et al. Synthesis and performance evaluation of amphoteric hydrophobic association polyacrylamide[J]. Fine Chemicals, 2012, 29(5): 499–504,516.
    [25]
    赵金洲,王松,李勇明. 页岩气藏压裂改造难点与技术关键[J]. 天然气工业,2012,32(4):46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011

    ZHAO Jinzhou, WANG Song, LI Yongming. Difficulties and technical key points of fracturing reformation of shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(4): 46–49. doi: 10.3787/j.issn.1000-0976.2012.04.011
    [26]
    蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006
    [27]
    贾长贵. 页岩气高效变黏滑溜水压裂液[J]. 油气田地面工程,2013,32(11):1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001

    JIA Changgui. High-efficiency variable viscous slick water fracturing fluid for shale gas[J]. Oil-Gasfield Surface Engineering, 2013, 32(11): 1–2. doi: 10.3969/j.issn.1006-6896.2013.11.001
    [28]
    YANG Bo, ZHAO Jinzhou, MAO Jincheng, et al. Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 302–313.
    [29]
    HSIN C C, THOMAS N, YE X, et al. A friction reducer: self-cleaning to enhance conductivity for hydraulic fracturing[R]. SPE 170602, 2014.
    [30]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
  • Related Articles

    [1]LI Zhong. Key Technologies and Field Applications of Intelligent Perception in Offshore Drilling and Completion[J]. Petroleum Drilling Techniques, 2024, 52(5): 20-25. DOI: 10.11911/syztjs.2024083
    [2]WANG Xigui, ZOU Deyong, YANG Liwen, GAO Wei, SUN Shaoliang, SU Yang. Development and Field Application of a Coalbed Methane Coring Tool with Pressure Maintenance, Thermal Insulation, and Shape Preservation Capabilities[J]. Petroleum Drilling Techniques, 2021, 49(3): 94-99. DOI: 10.11911/syztjs.2021061
    [3]ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
    [4]QIAN Xiaolin, XUAN Yang, LIN Yongxue, YANG Xiaohua. Development and Application of an Environmental-FriendlyDrilling Fluid Lubricant SMLUB-E[J]. Petroleum Drilling Techniques, 2020, 48(1): 34-39. DOI: 10.11911/syztjs.2019113
    [5]TIAN Jingyan, XU Yuchao. Design and Field Application of a Micro-Coring PDC Bit[J]. Petroleum Drilling Techniques, 2019, 47(1): 65-68. DOI: 10.11911/syztjs.2018134
    [6]DONG Linfang, CHEN Xinyang. Performance Evaluation and Field Application of a Self-Suspending Proppant[J]. Petroleum Drilling Techniques, 2018, 46(6): 90-94. DOI: 10.11911/syztjs.2018144
    [7]WANG Haitao, JIANG Tingxue, BIAN Xiaobing, DUAN Hua. Optimization and Field Application of Hydraulic Fracturing Techniques in Deep Shale Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76-81. DOI: 10.11911/syztjs.201602013
    [8]WANG Xiaojun. The Development and Application of Solid-Free Micro-Foam Drilling Fluid with Temperature Resistance and Salt Tolerance[J]. Petroleum Drilling Techniques, 2016, 44(2): 58-64. DOI: 10.11911/syztjs.201602010
    [9]LIANG Haiming, PEI Xueliang, ZHAO Bo. Coring Techniques in Shale Formations and Their Field Application[J]. Petroleum Drilling Techniques, 2016, 44(1): 39-43. DOI: 10.11911/syztjs.201601008
    [10]Zhang Hao, Zhang Bin, Xu Guojin. Applications of Zwitterionic Polymer HRH Drilling Fluid in Linpan Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 57-63. DOI: 10.3969/j.issn.1001-0890.2014.02.012
  • Cited by

    Periodical cited type(2)

    1. 杨文景,史宏江,潘兴明,路一平,王志国. 耐磨集成测井电极优化设计. 石油矿场机械. 2024(03): 48-53 .
    2. 曾祥安,朱丹丹,周昊,徐朝晖. 基于特征融合的微电阻率成像测井空白带无监督填充方法. 电子测量技术. 2024(08): 171-180 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (370) PDF downloads (89) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return