Citation: | LI Fan, LI Daqi, JIN Junbin, et al. Drilling fluid technology for wellbore stability of the diabase formation in Shunbei Oil & Gas Field [J]. Petroleum Drilling Techniques,2023, 51(2):61-67. DOI: 10.11911/syztjs.2022041 |
In view of the complex wellbore collapse and instability during the drilling of the diabase formation in Shunbei Oil& Gas Field, X-ray diffraction, scanning electron microscopy (SEM), high-pressure mercury injection, linear expansion, rolling recovery, triaxial rock mechanics tester, and other methods were used to investigate the fabric characteristics and physical and chemical properties of the diabase formation. Meanwhile, the influence of rock mechanical properties and the drilling tool vibration on the wellbore of the diabase formation were analyzed.The results indicated that the weak surface effect of micro-fractures could easily induce wellbore collapse and instability of the diabase rock mass. In addition, the torsional and lateral vibration of the drilling tool had a greater impact on the wellbore instability of the diabase formation. Then, the density , plugging performance, and rock-carrying performance of the drilling fluid were optimized, and the drilling fluid technology for wellbore stability of the diabase formation was proposed with its supporting drilling technologies developed. The technology was applied in the three-section casing of Well Shunbei X, and the diabase formation with a thickness of 22 m was drilled successfully. During the drilling process, the performance of the drilling fluid was satisfactory, and there were no obvious complications, and tripping operated normally. Furthermore, the average borehole diameter expansion rate of the well section was only 6.0%. The drilling fluid technology for wellbore stability of the diabase formation could ensure the safe and smooth drilling of diabase sections and regular boreholes. Thus, it has an excellent effect on solving the complex wellbore instability of the diabase formation.
[1] |
林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术,2019,47(3):113–120. doi: 10.11911/syztjs.2019068
LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120. doi: 10.11911/syztjs.2019068
|
[2] |
刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17. doi: 10.11911/syztjs.2022072
LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17. doi: 10.11911/syztjs.2022072
|
[3] |
翟科军,于洋,刘景涛,等. 顺北油气田火成岩侵入体覆盖区超深井优快钻井技术[J]. 石油钻探技术,2020,48(2):1–5. doi: 10.11911/syztjs.2020004
ZHAI Kejun, YU Yang, LIU Jingtao, et al. Ultra-deep well drilling technology in the igneous invasion coverage area of the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 1–5. doi: 10.11911/syztjs.2020004
|
[4] |
丁锐,邱正松,李健鹰,等. 强烈蚀变火山岩地层组构及其防塌钻井液研究[J]. 石油大学学报(自然科学版),2000,24(5):14–16.
DING Rui, QIU Zhengsong, LI Jianying, et al. Characteristics of altered pyroclastic rock and preparation of anti-sloughing drilling fluid[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2000, 24(5): 14–16.
|
[5] |
朱宽亮,吴晓红,宫丽,等. 南堡油田馆陶组玄武岩井壁稳定技术的研究[J]. 钻井液与完井液,2010,27(2):26–29. doi: 10.3969/j.issn.1001-5620.2010.02.008
ZHU Kuanliang, WU Xiaohong, GONG Li, et al. The effect of high temperature on clays in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2010, 27(2): 26–29. doi: 10.3969/j.issn.1001-5620.2010.02.008
|
[6] |
周祥林,张麒麟,惠正文,等. 查干凹陷火山岩与泥岩地层安全钻井影响因素分析[J]. 断块油气田,2013,20(6):813–816.
ZHOU Xianglin, ZHANG Qilin, HUI Zhengwen, et al. Influence factor analysis of safe drilling for volcanic rock and mudstone formation in Chagan Depression[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 813–816.
|
[7] |
陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1–10. doi: 10.11911/syztjs.2022069
CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1–10. doi: 10.11911/syztjs.2022069
|
[8] |
路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001
LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
|
[9] |
陈修平,高雷雨,刘景涛,等. 顺北油气田却尔却克组井壁失稳机理及应对措施[J]. 钻井液与完井液,2021,38(1):35–41. doi: 10.3969/j.issn.1001-5620.2021.01.006
CHEN Xiuping, GAO Leiyu, LIU Jingtao, et al. Mechanisms of borehole wall destabilization in Que’er’Que’ke Formation in Shunbei Oil and Gas Field and measures dealing with the borehole wall collapse[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 35–41. doi: 10.3969/j.issn.1001-5620.2021.01.006
|
[10] |
马庆佑,唐照星,韩强. 塔里木盆地早古生代桑塔木组辉绿岩SHRIMP锆石U-Pb年龄及成因讨论[J]. 西北地质,2018,51(1):137–143. doi: 10.3969/j.issn.1009-6248.2018.01.014
MA Qingyou, TANG Zhaoxing, HAN Qiang. SHRIMP zircon U-Pb dating of diabase in Early Paleozoic Sangtamu Formation in, Tarim Basin and its genesis[J]. Northwestern Geology, 2018, 51(1): 137–143. doi: 10.3969/j.issn.1009-6248.2018.01.014
|
[11] |
张鹤. 超深井钻柱振动激励机制及动力学特性分析[D]. 上海: 上海大学, 2019.
ZHANG He. Research on the mechanism of vibration excitation and the drillstring dynamics in ultra-deep wells[D]. Shanghai: Shanghai University, 2019.
|
[12] |
刘伟吉. 钻柱碰击以及井筒内压对井壁稳定性的影响[D]. 成都: 西南石油大学, 2014.
LIU Weiji. Influence of drilling string impact and wellbore pressure on wellbore stability[D]. Chengdu: Southwest Petroleum University, 2014.
|
[13] |
YIGIT A S, CHRISTOFOROU A P. Stick-slip and bit-bounce interaction in oil-well drillstrings[J]. Journal of Energy Resources Technology, 2006, 128(4): 268–274. doi: 10.1115/1.2358141
|
[14] |
吕苗荣,沈诗刚. 钻柱黏滑振动动力学研究[J]. 西南石油大学学报(自然科学版),2014,36(6):150–159.
LYU Miaorong, SHEN Shigang. The simulation and analysis of drillstring stick-slip vibration[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(6): 150–159.
|
[15] |
MELAKHESSOU H, BERLIOZ A, FERRARIS G. A nonlinear well-drillstring interaction model[J]. Journal of Vibration and Acoustics, 2003, 125(1): 46–52. doi: 10.1115/1.1523071
|
[16] |
王明杰. 超深井钻柱动力学特性分析及动态安全性评价[D]. 上海: 上海大学, 2016.
WANG Mingjie. Drillstring dynamic characteristics analysis and dynamic safety evaluation for ultra-deep well[D]. Shanghai: Shanghai University, 2016.
|
[17] |
PLÁCIDO J C R, SANTOS H M R, GALEANO Y D. Drillstring vibration and wellbore instability[J]. Journal of Energy Resources Technology, 2002, 124(4): 217–222. doi: 10.1115/1.1501302
|
[18] |
张亚云,李大奇,高书阳,等. 顺北油气田奥陶系破碎性地层井壁失稳影响因素分析[J]. 断块油气田,2022,29(2):256–260.
ZHANG Yayun, LI Daqi, GAO Shuyang, et al. Analysis on influencing factors of wellbore instability of Ordovician fractured formation in Shunbei Oil and Gas Field[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 256–260.
|
[19] |
翟科军,寇春松,陈修平,等. 断裂带破碎地层井壁稳定机理的离散元法分析[J]. 石油钻采工艺,2021,43(5):559–565. doi: 10.13639/j.odpt.2021.05.001
ZHAI Kejun, KOU Chunsong, CHEN Xiuping, et al. Analyzing well instability mechanisms in broken formations of faulted zones based on discrete element method[J]. Oil Drilling & Production Technology, 2021, 43(5): 559–565. doi: 10.13639/j.odpt.2021.05.001
|
[20] |
朱金智, 杨学文, 刘洪涛, 等. 塔河南岸跃满区块三叠系防塌钻井液研究与应用[J]. 钻井液与完井液, 2022, 39(3): 319−326.
ZHU Jinzhi, YANG Xuewen, LIU Hongtao, et al. Research and application of triassic anti-collapse drilling fluid in Yueman Block on the south bank of Tahe River[J]. Drilling Fluid & Completion Fluid, 2022, 39(3): 319−326.
|
[21] |
付超胜, 敖天, 余加水, 等. 强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用[J]. 钻井液与完井液, 2021, 38(4): 469−473.
FU Chaosheng, AO Tian, YU Jiashui, et al. Field application of a plugging borehole wall anti-collapse agent XZ-OSD in the piedmont structural belt on the south margin of Junggar basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 469−473.
|
1. |
周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 .
![]() | |
2. |
袁永文,张西峰,李宏伟,胡春,宁朝华,杨红刚,程严军. 有缆式第四代智能分层注水技术优化及现场应用. 粘接. 2024(07): 117-120 .
![]() |