Citation: | LI Shuzhan, YANG Jin, ZHU Guojing, et al. Prediction of the minimum depth of setting for conductor anchor node in deep-water drilling [J]. Petroleum Drilling Techniques,2023, 51(2):29-36. DOI: 10.11911/syztjs.2022039 |
When deep-water oil-gas fields adopt the conductor anchor node(CAN) for surface well construction, the wellhead may suffer from collapse, or the formation is too hard to run it in place. On the basis of analyzing the running principle of the CAN, a bearing capacity model of the CAN considering the effects of installation effect was established. In view of the most dangerous working conditions during the second spud cementing, the formula of maximum wellhead load during drilling was derived, and a depth of setting model for the CAN based on the bearing capacity was established by considering the safety factor of the pile foundation. Through the calculation model of the setting depth, the minimum depth of the setting in mud of the CAN of Well X in the South China Sea was 10.56 m. On the basis of the environmental parameters of Well X in the South China Sea, a finite element model was established by ABAQUS software, and the vertical bearing capacity of the wellhead suction pile was calculated to be 8 593.22 kN. At the same depth of setting in mud, the bearing capacity was theoretically calculated to be 8 063.59 kN, with an error of 6.16%, which reflected a high accuracy. The research revealed that the depth of setting model for the CAN based on the ultimate bearing capacity could accurately predict the minimum depth of setting of the CAN and effectively improve the safety of the subsea wellhead during the installation and drilling stages.
[1] |
呙义,高晓飞,易会安,等. 海上油田全寿命控水完井技术研究及现场试验[J]. 石油钻探技术,2021,49(6):93–98. doi: 10.11911/syztjs.2021120
GUO Yi, GAO Xiaofei, YI Huian, et al. Research and field test on life-long water control completion technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93–98. doi: 10.11911/syztjs.2021120
|
[2] |
牟汉生,陆文明,曹长霄,等. 深水浊积岩油藏提高采收率方法研究: 以安哥拉X油藏为例[J]. 石油钻探技术,2021,49(2):79–89. doi: 10.11911/syztjs.2021025
MOU Hansheng, LU Wenming, CAO Changxiao, et al. Study on enhanced oil recovery method in deep-water turbidite reservoirs: a case study of X reservoir in Angola[J]. Petroleum Drilling Techniques, 2021, 49(2): 79–89. doi: 10.11911/syztjs.2021025
|
[3] |
杨进,曹式敬. 深水石油钻井技术现状及发展趋势[J]. 石油钻采工艺,2008,30(2):10–13. doi: 10.3969/j.issn.1000-7393.2008.02.002
YANG Jin, CAO Shijing. Current situation and developing trend of petroleum drilling technologies in deep water[J]. Oil Drilling & Production Technology, 2008, 30(2): 10–13. doi: 10.3969/j.issn.1000-7393.2008.02.002
|
[4] |
杨进,李文龙,胡志强,等. 深水钻井水下井口稳定性研究进展[J]. 中国海上油气,2020,32(4):124–130.
YANG Jin, LI Wenlong, HU Zhiqiang, et al. Research progresses on subsea wellhead stability of deep water drilling[J]. China Offshore Oil and Gas, 2020, 32(4): 124–130.
|
[5] |
秦源康,刘康,陈国明,等. 海洋水合物地层导管吸力锚贯入安装负压窗口分析[J]. 石油钻采工艺,2021,43(6):737–743. doi: 10.13639/j.odpt.2021.06.008
QIN Yuankang, LIU Kang, CHEN Guoming, et al. Negative pressure analysis for the penetration installation of conductor suction anchor in marine hydrate reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(6): 737–743. doi: 10.13639/j.odpt.2021.06.008
|
[6] |
刘正,刘和兴,同武军,等. 深水吸力桩新型表层建井技术适应性分析[J]. 石油工业技术监督,2021,37(4):57–62. doi: 10.3969/j.issn.1004-1346.2021.04.016
LIU Zheng, LIU Hexing, TONG Wujun, et al. Adaptability analysis of new constructing well technology with suction pile for deep-water wells[J]. Technology Supervision in Petroleum Industry, 2021, 37(4): 57–62. doi: 10.3969/j.issn.1004-1346.2021.04.016
|
[7] |
李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi: 10.11911/syztjs.2020095
LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi: 10.11911/syztjs.2020095
|
[8] |
MACKERETH F J H. A portable core sampler for lake deposits[J]. Limnology and Oceanography, 1958, 3(2): 181–191. doi: 10.4319/lo.1958.3.2.0181
|
[9] |
代恒军. 软土中吸力锚承载力分析[D]. 杭州: 浙江大学, 2008.
DAI Hengjun. Ultimate capacity of suction anchor in clay[D]. Hangzhou: Zhejiang University, 2008.
|
[10] |
ANDERSEN K H, LAURITZSEN R. Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, 1988, 114(5): 540–555. doi: 10.1061/(ASCE)0733-9410(1988)114:5(540)
|
[11] |
CHENG Xinglei, WANG Jianhua, WANG Zhexue. Incremental elastoplastic FEM for simulating the deformation process of suction caissons subjected to cyclic loads in soft clays[J]. Applied Ocean Research, 2016, 59: 274–285. doi: 10.1016/j.apor.2016.05.015
|
[12] |
刘永刚. 砂土中提高筒型基础承载力的应用研究[D]. 天津: 天津大学, 2010.
LIU Yonggang. Applied research on improving bearing capacity of bucket foundation in sandy soil[D]. Tianjin: Tianjin University, 2010.
|
[13] |
丁红岩,李占印. 粉土中吸力锚土塞形成模型试验[J]. 华北石油设计,1999(4):8–12.
DING Hongyan, LI Zhanyin. Model test of soil plug formation in suction bucket in silt[J]. Huabei Petroleum Design, 1999(4): 8–12.
|
[14] |
丁红岩,刘振勇,陈星. 吸力锚土塞在粉质粘土中形成的模型试验研究[J]. 岩土工程学报,2001,23(4):441–444. doi: 10.3321/j.issn:1000-4548.2001.04.012
DING Hongyan, LIU Zhenyong, CHEN Xing. Model tests on soil plug formation in suction anchor for silty clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 441–444. doi: 10.3321/j.issn:1000-4548.2001.04.012
|
[15] |
丁红岩,杜杰,戚兰. 吸力锚下沉过程中土塞高度计算[J]. 天津大学学报,2002,35(4):439–442. doi: 10.3969/j.issn.0493-2137.2002.04.006
DING Hongyan, DU Jie, QI Lan. Height of soil-plug calculation in suction anchor[J]. Journal of Tianjin University, 2002, 35(4): 439–442. doi: 10.3969/j.issn.0493-2137.2002.04.006
|
[16] |
丁红岩,张浦阳. 海上吸力锚负压下沉渗流场的特性分析[J]. 海洋技术,2003,22(4):44–48.
DING Hongyan, ZHANG Puyang. Suction penetration seepage field's characteristics of suction anchor[J]. Ocean Technology, 2003, 22(4): 44–48.
|
[17] |
API. API RP 2GEO:2011[Z]. 2014-10.
|
[18] |
蒋杏雨. 宽浅式筒型基础在粉质粘土中的承载力研究[D]. 天津: 天津大学, 2015.
JIANG Xingyu. Analysis on bearing capacity of wide and shallow bucket foundation in silty clay[D]. Tianjin: Tianjin University, 2015.
|
[19] |
李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013: 298-302.
LI Guangxin, ZHANG Bingyin, YU Yuzhen. Soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 298-302.
|
[20] |
蔺文龙. 安装效应对桩靴弹塑性力学行为的影响研究[D]. 重庆: 重庆大学, 2021.
LIN Wenlong. Study on the influence of installation effect on elastoplastic behavior of spudcan[D]. Chongqing: Chongqing University, 2021.
|
[21] |
秦伟. 海上风电大直径开口钢管桩锤击贯入过程研究[D]. 南京: 东南大学, 2020.
QIN Wei. Impacted penetration progress researches of large-diameter open-ended steel pipe pile applied in offshore wind farm[D]. Nanjing: Southeast University, 2020.
|
[22] |
周波,杨进,周建良,等. 深水喷射扰动对表层导管承载力的影响规律[J]. 中国海上油气,2016,28(1):98–102.
ZHOU Bo, YANG Jin, ZHOU Jianliang, et al. Pattern of influence of disturbance caused by jetting on bearing capacity of surface conductor in deep water zones[J]. China Offshore Oil and Gas, 2016, 28(1): 98–102.
|
[23] |
周波,杨进,刘正礼,等. 深水钻井表层导管静置时间窗口设计[J]. 石油勘探与开发,2014,41(2):234–238. doi: 10.11698/PED.2014.02.14
ZHOU Bo, YANG Jin, LIU Zhengli, et al. Design of structure casing soaking time in deepwater drilling[J]. Petroleum Exploration and Development, 2014, 41(2): 234–238. doi: 10.11698/PED.2014.02.14
|
[24] |
马宝金,魏士鹏,文江,等. 吸力桩基础设计与建造安装关键技术研究[J]. 石油工程建设,2021,47(2):82–86. doi: 10.3969/j.issn.1001-2206.2021.02.019
MA Baojin, WEI Shipeng, WEN Jiang, et al. Design, fabrication and installation of suction pile foundation[J]. Petroleum Engineering Construction, 2021, 47(2): 82–86. doi: 10.3969/j.issn.1001-2206.2021.02.019
|
[25] |
叶建良,秦绪文,谢文卫,等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质,2020,47(3):557–568. doi: 10.12029/gc20200301
YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557–568. doi: 10.12029/gc20200301
|
1. |
梁孝柏,鞠玮. 基于拓扑结构分析的断层连通性评价——以川南泸州中区深层页岩气储层多级断层为例. 油气藏评价与开发. 2024(03): 446-457 .
![]() | |
2. |
胡辉庭,马勇,张遂安,张凯逊,张海鹏,黄越. 页岩裂缝和基质渗透率各向异性特征及影响因素. 科学技术与工程. 2023(24): 10252-10263 .
![]() | |
3. |
赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 .
![]() | |
4. |
位云生,王军磊,于伟,齐亚东,苗继军,袁贺,刘楚溪. 基于三维分形裂缝模型的页岩气井智能化产能评价方法. 石油勘探与开发. 2021(04): 787-796 .
![]() | |
5. |
WEI Yunsheng,WANG Junlei,YU Wei,QI Yadong,MIAO Jijun,YUAN He,LIU Chuxi. A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model. Petroleum Exploration and Development. 2021(04): 911-922 .
![]() |
|
6. |
林应之,林启才,邓世杨,李翼. 深层砂岩裂缝性气藏缝网压裂裂缝导流能力分析. 油气井测试. 2021(05): 9-17 .
![]() | |
7. |
李宪文,赵振峰,李喆,王文东,丛海龙. 随机分形压裂水平井缝网参数反演方法. 断块油气田. 2019(02): 205-209 .
![]() | |
8. |
申浩冉,丁文龙,谷阳,孙宁,翟中杨,田晓敏. 黔北凤冈地区龙马溪组页岩孔隙结构特征. 断块油气田. 2019(04): 480-485 .
![]() |