WANG Ping, SHEN Haichao. High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102. DOI: 10.11911/syztjs.2021123
Citation: WANG Ping, SHEN Haichao. High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102. DOI: 10.11911/syztjs.2021123

High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada

More Information
  • Received Date: January 11, 2021
  • Revised Date: October 22, 2021
  • Available Online: November 14, 2021
  • In order to realize the economical and high-efficient development of the M tight sandstone gas reservoir in Canada, technical studies and innovations about layer subdivision, optimization of operation parameters during drilling and completion, optimal and fast drilling, post-frac flowback, and multi-well pad development were conducted. In this way, the key technologies integrated geology and engineering were formed, including a layer subdivision technology of a super thick sandstone reservoir, a match technology of operation parameters during drilling and completion by machine learning and big data analysis, optimal and fast drilling of horizontal wells with low costs, well-soaking flowback, as well as 3D multi-well pad development, etc. After field application, these technologies sharply increased the drilling and completion efficiency with evident decreased development costs. Further, the single well witnessed a remarkable increase in productivity, and achieved significantly increased efficiency and reduced costs. The successful development of the M tight sandstone gas reservoir has provided a technical reference for high-efficient development of unconventional reservoirs in China.
  • [1]
    US Energy Information Administration. International energy outlook 2019 with projections to 2050[R]. Washington, DC: EIA, 2019.
    [2]
    National Energy Board. Tight oil development in the Western Canada Sedimentary Basin: energy briefing note[R]. Alberta: National Energy Board, 2011.
    [3]
    陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081

    CHEN Zuo, LIU Honglei, LI Yingjie, et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081
    [4]
    李庆辉,陈勉,WANG F P,等. 工程因素对页岩气产量的影响:以北美Haynesville页岩气藏为例[J]. 天然气工业,2012,32(4):54–59. doi: 10.3787/j.issn.1000-0976.2012.04.013

    LI Qinghui, CHEN Mian, WANG F P, et al. Influences of engineering factors on shale gas productivity: a case study from the Haynesville shale gas reservoir in North America[J]. Natural Gas Industry, 2012, 32(4): 54–59. doi: 10.3787/j.issn.1000-0976.2012.04.013
    [5]
    MASTERS J A. Deep basin gas trap, Western Canada[J]. AAPG Bulletin, 1979, 63(2): 152–181.
    [6]
    LAW B E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891–1919.
    [7]
    光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6.

    GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.
    [8]
    石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021

    SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021
    [9]
    赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138.

    ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
    [10]
    章敬. 非常规油藏地质工程一体化效益开发实践:以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155.

    ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155.
    [11]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [12]
    刘巍,刘威,谷建伟. 基于机器学习方法的油井日产油量预测[J]. 石油钻采工艺,2020,42(1):70–75.

    LIU Wei, LIU Wei, GU Jianwei. Oil production prediction based on a machine learning method[J]. Oil Drilling & Production Technology, 2020, 42(1): 70–75.
    [13]
    耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78. doi: 10.11911/syztjs.2020134

    GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78. doi: 10.11911/syztjs.2020134
    [14]
    王建龙,冯冠雄,刘学松,等. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2020,48(5):9–14. doi: 10.11911/syztjs.2020086

    WANG Jianlong, FENG Guanxiong, LIU Xuesong, et al. Key technology for drilling and completion of shale gas horizontal wells with ultra-long horizontal sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9–14. doi: 10.11911/syztjs.2020086
    [15]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drill-ing/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [16]
    刘博峰,张庆九,陈鑫,等. 致密油储层压裂液渗吸特征及水锁损害评价[J]. 断块油气田,2021,28(3):318–322.

    LIU Bofeng, ZHANG Qingjiu, CHEN Xin, et al. Completion fluid absorption characteristics for tight reservoir and damage evalua-tion[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 318–322.
    [17]
    王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
    [18]
    秦文政,党军,臧传贞,等. 玛湖油田玛18井区 “工厂化” 水平井钻井技术[J]. 石油钻探技术,2019,47(2):15–20. doi: 10.11911/syztjs.2019025

    QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 Well Block of the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 15–20. doi: 10.11911/syztjs.2019025
    [19]
    路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
  • Related Articles

    [1]ZHANG Weiguo, JIANG Kun, SONG Yu, DENG Chenghui, HUANG Yiqiang, MA Yi. Drilling Speed Enhancement Method for Extended Reach Wells Based on Machine Learning and Bayesian Optimization[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025027
    [2]ZHANG Lina, REN Jianhua, HU Chunfeng. Three-Dimensional Development Characteristics and Fracture Network Interference of Atmospheric Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149-155. DOI: 10.11911/syztjs.2023090
    [3]WENG Dingwei, JIANG Yun, YI Xinbin, HE Chunming, CHE Mingguang, ZHU Yihui. Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback[J]. Petroleum Drilling Techniques, 2023, 51(5): 49-57. DOI: 10.11911/syztjs.2023080
    [4]ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, DAI Yongbo, ZHANG Jincheng, XU Mingbiao. Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16-21. DOI: 10.11911/syztjs.2022097
    [5]YUAN Jianqiang. Key Engineering Technologies for Three-Dimensional Development of Multiple Formations of Shale Oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1-8. DOI: 10.11911/syztjs.2023001
    [6]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [7]LIN Yongmao, MIAO Weijie, LIU Lin, LI Yongming, QIU Ling. 3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105-112. DOI: 10.11911/syztjs.2022009
    [8]CHEN Kui, ZHU Shaopeng, ZOU Mingsheng, GAI Yonghao, DONG Zhihua, ZHU Yushuang. Research on Development Evaluation Well Drilling Modes for Exploration and Development Integration in Weixinan Sag[J]. Petroleum Drilling Techniques, 2021, 49(6): 42-49. DOI: 10.11911/syztjs.2021108
    [9]Wang Yang, Zhao Bing, Yuan Qingyun, Zeng Cheng. Integrated Techniques in Tight Reservoir Development for Horizontal Wells in Block Shun 9[J]. Petroleum Drilling Techniques, 2015, 43(4): 48-52. DOI: 10.11911/syztjs.201504009
    [10]Zhao Chongzhen. 3D Fracturing Network Optimization Techniques for Horizontal Wells in Sandstone-Conglomerate Formations[J]. Petroleum Drilling Techniques, 2014, 42(5): 95-99. DOI: 10.11911/syztjs.201405017
  • Cited by

    Periodical cited type(36)

    1. 翟文宝,陈朝伟,王倩,冯枭,黄浩勇,谭鹏,杨子轩. 基于地质力学的断裂滑动风险评估方法. 西安石油大学学报(自然科学版). 2025(02): 74-84 .
    2. 付海峰,刘鹏林,陈祝兴,翁定为,马泽元,李军. 基于避免断层激活机制的组合压裂模式研究. 石油机械. 2024(01): 88-97 .
    3. 刘豪,刘怀亮,刘宇,曹伟,连威,李军. 页岩气多级压裂断层动态滑移规律研究. 石油机械. 2024(02): 65-74 .
    4. 刘怀亮,樊子潇,刘宇,连威,席岩,张小军. 基于震源机制的断层滑移量计算方法. 世界石油工业. 2024(05): 40-47 .
    5. 林魂,宋西翔,杨兵,袁勇,张健强,孙新毅. 温-压耦合作用下断层滑移对套管应力的影响. 石油机械. 2023(06): 136-142+158 .
    6. 孟胡,吕振虎,王晓东,张辉,申颍浩,葛洪魁. 基于压裂参数优化的套管剪切变形控制研究. 断块油气田. 2023(04): 601-608 .
    7. 张伟,李军,张慧,王典,李托,刘怀亮. 断层滑移对套管剪切变形的影响规律及防控措施. 断块油气田. 2023(05): 734-742 .
    8. 文山师,尹陈,石学文,张洞君,韩福盛,熊财富. 天然裂缝主导模式下泸州龙马溪组页岩水力压裂多尺度破裂特征. 地球物理学进展. 2023(05): 2172-2181 .
    9. 赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 . 本站查看
    10. 孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
    11. 陈朝伟,周文高,项德贵,谭鹏,宋建,陈晓军,任乐佳,黄浩. 预防页岩气套变的橡胶组合套管研制及其抗剪切性能评价. 天然气工业. 2023(11): 131-136 .
    12. 张旭,张哲平,杨尚谕,王雪刚,宋琳. 基于特征值和弧长法计算套管抗挤强度. 钻采工艺. 2022(01): 35-40 .
    13. 陈朝伟,项德贵. 四川盆地页岩气开发套管变形一体化防控技术. 中国石油勘探. 2022(01): 135-141 .
    14. 吴建忠,乔智国,慈建发,何龙,连威,李军. 基于震源机制的套管变形量控制方法研究. 石油管材与仪器. 2022(03): 24-31 .
    15. 刘鹏林,李军,席岩,连威,张小军,郭雪利. 页岩断层滑移量计算模型及影响因素研究. 石油机械. 2022(08): 74-80 .
    16. 郭雪利,沈吉云,武刚,靳建洲,纪宏飞,徐明,刘慧婷,黄昭. 韧性材料对页岩气压裂井水泥环界面完整性影响. 表面技术. 2022(12): 232-242 .
    17. 陈朝伟,黄锐,曾波,宋毅,周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析. 石油钻探技术. 2021(01): 93-100 . 本站查看
    18. 李军,赵超杰,柳贡慧,张辉,张鑫,任凯. 页岩气压裂条件下断层滑移及其影响因素. 中国石油大学学报(自然科学版). 2021(02): 63-70 .
    19. 张平,何昀宾,刘子平,童亨茂,邓才,任晓海,张宏祥,李彦超,屈玲,付强,王向阳. 页岩气水平井套管的剪压变形试验与套变预防实践. 天然气工业. 2021(05): 84-91 .
    20. 李晓蓉,古臣旺,冯永存,丁泽晨. 考虑井筒加载历史的压裂过程中套管剪切变形数值模拟研究. 石油科学通报. 2021(02): 245-261 .
    21. 张鑫,李军,刘鹏林,郭雪利,韩葛伟. 断层滑移条件下页岩气井套管变形影响因素分析. 科学技术与工程. 2021(16): 6651-6656 .
    22. 陈朝伟,张浩哲,周小金,曹虎. 四川长宁页岩气套管变形井微地震特征分析. 石油地球物理勘探. 2021(06): 1286-1292+1198 .
    23. 张慧,李军,张小军,张鑫,连威. 页岩气井压裂液进入断层的途径及防控措施. 断块油气田. 2021(06): 750-754+760 .
    24. 林志伟,钟守明,宋琳,王雪刚,林铁军,于浩,史涛. 体积压裂改造非对称性对套管损坏影响机理. 特种油气藏. 2021(06): 158-164 .
    25. 陈朝伟,房超,朱勇,项德贵. 四川页岩气井套管变形特征及受力模式. 石油机械. 2020(02): 126-134 .
    26. 连威,李军,柳贡慧,席岩,韩葛伟. 水力压裂过程中页岩强度折减对套管变形的影响分析. 石油管材与仪器. 2020(04): 46-50 .
    27. 蒋振源,陈朝伟,张平,张丰收. 断块滑动引起的套管变形及影响因素分析. 石油管材与仪器. 2020(04): 30-37 .
    28. 范宇,黄锐,曾波,陈朝伟,周小金,项德贵,宋毅. 四川页岩气水力压裂诱发断层滑动和套管变形风险评估. 石油科学通报. 2020(03): 366-375 .
    29. 陈朝伟,曹虎,周小金,苟其勇,张浩哲. 四川盆地长宁区块页岩气井套管变形和裂缝带相关性. 天然气勘探与开发. 2020(04): 123-130 .
    30. 席岩,李军,柳贡慧,曾义金,李剑平. 页岩气水平井多级压裂过程中套管变形研究综述. 特种油气藏. 2019(01): 1-6 .
    31. 乔磊,田中兰,曾波,杨恒林,付盼,杨松. 页岩气水平井多因素耦合套变分析. 断块油气田. 2019(01): 107-110 .
    32. 高德利,刘奎. 页岩气井井筒完整性若干研究进展. 石油与天然气地质. 2019(03): 602-615 .
    33. 罗庆,黄华,徐菲,张立. 新型组合井况监测仪在普光高含硫气井的应用. 断块油气田. 2019(02): 240-243 .
    34. 陈朝伟,项德贵,张丰收,安孟可,尹子睿,蒋振源. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略. 石油科学通报. 2019(04): 364-377 .
    35. 周波,毛蕴才,查永进,汪海阁. 体积压裂水锤效应对页岩气井屏障完整性影响及对策. 石油钻采工艺. 2019(05): 608-613 .
    36. 郭雪利,李军,柳贡慧,陈朝伟,任凯,来东风. 基于震源机制的页岩气压裂井套管变形机理. 断块油气田. 2018(05): 665-669 .

    Other cited types(32)

Catalog

    Article Metrics

    Article views (381) PDF downloads (74) Cited by(68)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return