MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, ZHENG Bintao, DENG Xu. Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094
Citation: MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, ZHENG Bintao, DENG Xu. Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130-138. DOI: 10.11911/syztjs.2021094

Research on Interlayer Interference and the Fracture Propagation Law of Shale Oil Reservoirs in the Dongying Sag

More Information
  • Received Date: March 28, 2021
  • Revised Date: June 28, 2021
  • Available Online: July 26, 2021
  • The Dongying Sag is rich in shale oil reserves, but poor in reservoir physical properties. The sag has many thin oil-bearing layer sequences in the vertical direction, which are mostly interlayered with limestone and mudstone. To precisely describe the law for the interlayer interference and the fracture propagation of the shale oil reservoirs in the Dongying Sag, a separate-layer fracturing model based on seepage-stress-damage coupling was built with the nonlinear finite element method. The morphology and law for fracture propagation, and induced stress field were analyzed considering different flow rates and viscosities of fracturing fluid, and different thicknesses of the upper and lower isolation layers. On this basis, the fracturing parameters were optimized. Simulation results show that the stress interference area grows along with the propagation of hydraulic fractures. When the flow rate is 9–12 mm3/min and the viscosity is 20 mPa∙s, the induced stress at the tips of fractures is high. In this case, natural fractures are prone to be connected and good stimulation results can be achieved. In addition, layer crossing is rare when the thickness of the upper isolation layer is greater than 2.5 m and that of the lower one is greater than 4.5 m. The results can provide theoretical support for the subsequent hydraulic fracturing of shale oil reservoirs in the Dongying Sag.
  • [1]
    张全胜,李明,张子麟,等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探,2019,24(2):233–240.

    ZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli Oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233–240.
    [2]
    赵海峰,陈勉,金衍. 水力裂缝在地层界面的扩展行为[J]. 石油学报,2009,30(3):450–454. doi: 10.3321/j.issn:0253-2697.2009.03.025

    ZHAO Haifeng, CHEN Mian, JIN Yan. Extending behavior of hydraulic fracture on formation interface[J]. Acta Petrolei Sinica, 2009, 30(3): 450–454. doi: 10.3321/j.issn:0253-2697.2009.03.025
    [3]
    DANESHY A A. On the design of vertical hydraulic fractures[J]. Journal of Petroleum Technology, 1973, 25(1): 83–97. doi: 10.2118/3654-PA
    [4]
    ZHU Haiyan, DENG Jingen, CHEN Zijian, et al. Perforation optimization of hydraulic fracturing of oil and gas well[J]. Geomechanics and Engineering, 2013, 5(5): 463–483. doi: 10.12989/gae.2013.5.5.463
    [5]
    ZHU Haiyan, ZHAO Xing, GUO Jianchun, et al. Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 711–724. doi: 10.1016/j.jngse.2015.07.007
    [6]
    ZHU Haiyan, ZHANG Xudong, GUO Jianchun, et al. Stress field interference of hydraulic fractures in layered formation[J]. Geomechanics and Engineering, 2015, 9(5): 645–667. doi: 10.12989/gae.2015.9.5.645
    [7]
    SABERHOSSEINI S E, KESHAVARZI R, AHANGARI K. A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells[J]. Geomechanics and Engineering, 2014, 7(3): 233–246. doi: 10.12989/gae.2014.7.3.233
    [8]
    WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074)[J]. Journal of Petroleum Technology, 1987, 39(2): 209–220. doi: 10.2118/13224-PA
    [9]
    WARPINSKI N R, BRANAGAN P T. Altered-stress fracturing[J]. Journal of Petroleum Technology, 1989, 41(9): 990–997. doi: 10.2118/17533-PA
    [10]
    SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1946, 187(1009): 229–260.
    [11]
    SNEDDON I N, ELLIOT H A. The opening of a Griffith crack under internal pressure[J]. Quarterly of Applied Mathematics, 1946, 4(3): 262–267. doi: 10.1090/qam/17161
    [12]
    OLSON J E, WU Kan. Sequential versus simultaneous multi-zone fracturing in horizontal wells: insights from a non-planar, multi-frac numerical model[R]. SPE 152602, 2012.
    [13]
    CHENG Yueming. Boundary element analysis of the stress distribution around multiple fractures: implications for the spacing of perforation clusters of hydraulically fractured horizontal wells[R]. SPE 125769, 2009.
    [14]
    SHIN D H, SHARMA M M. Factors controlling the simultaneous propagation of multiple competing fractures in a horizontal well[R]. SPE 168599, 2014.
    [15]
    FJÆR E, HOLT R M, HORSRUD P, et al. Chapter 3 geological aspects of petroleum related rock mechanics[J]. Developments in Petroleum Science, 2008, 53: 103–133.
    [16]
    ZHU Haiyan, DENG Jingen, JIN Xiaochun, et al. Hydraulic fracture initiation and propagation from wellbore with oriented perforation[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 585–601. doi: 10.1007/s00603-014-0608-7
    [17]
    连志龙,张劲,王秀喜,等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学,2009,30(1):169–174. doi: 10.3969/j.issn.1000-7598.2009.01.029

    LIAN Zhilong, ZHANG Jin, WANG Xiuxi, et al. Simulation study on of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics, 2009, 30(1): 169–174. doi: 10.3969/j.issn.1000-7598.2009.01.029
    [18]
    李扬,邓金根,刘伟,等. 水平井分段多簇限流压裂数值模拟[J]. 断块油气田,2017,24(1):69–73.

    LI Yang, DENG Jingen, LIU Wei, et al. Numerical simulation of limited entry technique in multi-stage and multi-cluster horizontal well fracturing[J]. Fault-Block Oil & Gas Field, 2017, 24(1): 69–73.
    [19]
    李宗利,王亚红,任青文. 自然营造力作用下岩石单裂纹水力劈裂数值仿真模型[J]. 岩石力学与工程学报,2007,26(4):727–733. doi: 10.3321/j.issn:1000-6915.2007.04.010

    LI Zongli, WANG Yahong, REN Qingwen. Numerical simulation model of hydraulic fracturing of rock with a single fracture under natural hydraulic power[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 727–733. doi: 10.3321/j.issn:1000-6915.2007.04.010
    [20]
    ZHU H Y, DENG J G, LIU S J, et al. Hydraulic fracturing experiments of highly deviated well with oriented perforation technique[J]. Geomechanics and Engineering, 2014, 6(2): 153–172. doi: 10.12989/gae.2014.6.2.153
    [21]
    ZHU Haiyan, WANG Heng, TANG Xuanhe, et al. Hydraulic fracture propagation in sand-mudstone interbedded reservoir integrated with different fluid flow of multi-perforated fractures[R]. ARMA-CUPB-19-6836, 2019.
  • Cited by

    Periodical cited type(5)

    1. 马天寿,向国富,桂俊川,贾利春,唐宜家. 基于物理约束的分布式神经网络三维地应力预测模型. 地球物理学报. 2024(08): 3211-3228 .
    2. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
    3. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    4. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 .
    5. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (637) PDF downloads (113) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return