DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059
Citation: DI Qinfeng, RUI Zixiang, ZHOU Xing, FENG Dajun, WANG Wenchang, CHEN Feng. Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool[J]. Petroleum Drilling Techniques, 2021, 49(6): 8-16. DOI: 10.11911/syztjs.2021059

Research on Lateral Vibration Characteristics of Bottom Hole Assembly with Rotary Steerable Tool

More Information
  • Received Date: November 03, 2020
  • Revised Date: July 05, 2021
  • Available Online: August 23, 2021
  • To improve the borehole trajectory control effect and operation safety of rotary steerable tools, the analysis of the lateral vibration characteristics of rotary steerable bottom hole assembly (RSBHA) was conducted. A static push-the-bit rotary steerable tool can control borehole trajectories through its driving force produced from its three pads, and thus it can be regarded as an eccentric stabilizer with known eccentricity and eccentric azimuth. In this work, a three-dimensional statics model of RSBHA with small deflection was constructed to determine the spatial configuration of RSBHA under the weight on bit and the constraints of borehole wall by the weighted residual method, and thus to obtain the upper tangential point. Then, a finite element model was built, taking the distance between the upper tangential point and the bit as the effective length for lateral vibration. The lateral vibration responses of RSBHA could be elicited using the mode superposition method, and analysis of the influence of working and structural parameters on its lateral vibration could be made. The calculation results showed that when the rotary speed was around 138 r/min, the dynamic displacement of RSBHA was greater in the distances of 8.20 m, 18.10 m, 24.60 m, and 31.60 m away from the bit. The weight on bit had little impact on the maximum bending stress of RSBHA, while the eccentricity and eccentric azimuth had a greater impact on the lateral vibration characteristics, and the maximum bending stress would obviously increase for certain eccentricity and eccentric azimuth. The research shows that working and structural parameters have great influence on the lateral vibration of RSBHA, which should be optimized to ensure the proper application and operation safety of rotary steerable tools.
  • [1]
    王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺,2018,41(2):37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11

    WANG Zhirui, WANG Junliang. Development of rotary steering technology in foreign countries and its status quo in China[J]. Drilling & Production Technology, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11
    [2]
    郑锋辉,韩来聚,杨利,等. 国内外新兴钻井技术发展现状[J]. 石油钻探技术,2008,36(4):5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002

    ZHENG Fenghui, HAN Laiju, YANG Li, et al. Development of novel drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 5–11. doi: 10.3969/j.issn.1001-0890.2008.04.002
    [3]
    狄勤丰. 旋转导向井下闭环钻井技术[M]. 西安: 陕西科学技术出版社, 1999.

    DI Qinfeng. Rotary closed-loop drilling technology[M]. Xi’an: Shaanxi Science & Technology Press, 1999.
    [4]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [5]
    狄勤丰,赵业荣. 导向钻具组合动力学方程建立及传递函数求解[J]. 石油学报,2000,21(4):87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016

    DI Qinfeng, ZHAO Yerong. The establishing of dynamics equations and the transfer functions of the steering assembly of the downhole closed-loop drilling system[J]. Acta Petrolei Sinica, 2000, 21(4): 87–92. doi: 10.3321/j.issn:0253-2697.2000.04.016
    [6]
    李军,李东春,张辉,等. 推靠式旋转导向工具造斜能力影响因素[J]. 石油钻采工艺,2019,41(4):460–466.

    LI Jun, LI Dongchun, ZHANG Hui, et al. The influencing factors of the inclination ability of push-the-bit rotary guiding tool[J]. Oil Drilling & Production Technology, 2019, 41(4): 460–466.
    [7]
    刘建华,佀洁茹,耿艳峰,等. 动态指向式旋转导向钻井工具测控系统设计与性能分析[J]. 石油钻探技术,2018,46(6):59–64.

    LIU Jianhua, SI Jieru, GENG Yanfeng, et al. Design and performance analysis of the measurement and control systems of the dynamic point-the-bit rotary steerable drilling tool[J]. Petroleum Drilling Techniques, 2018, 46(6): 59–64.
    [8]
    徐天文,杨峰,赵建国. AutoTrack旋转导向工具现场应用分析[J]. 西部探矿工程,2016,28(6):11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004

    XU Tianwen, YANG Feng, ZHAO Jianguo. Analysis on the field application of AutoTrack rotary steering tool[J]. West-China Exploration Engineering, 2016, 28(6): 11–13. doi: 10.3969/j.issn.1004-5716.2016.06.004
    [9]
    史玉才,滕志想,白璟,等. 改进的静态推靠式旋转导向钻具组合力学模型[J]. 中国石油大学学报(自然科学版),2018,42(5):75–80.

    SHI Yucai, TENG Zhixiang, BAI Jing, et al. Improved mechanical model of the static push-the-bit rotary steerable bottom-hole assembly[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(5): 75–80.
    [10]
    王明杰,狄勤丰,王文昌,等. 柔性短节对RSBHA导向力特征的影响分析[J]. 钻采工艺,2012,35(1):52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16

    WANG Mingjie, DI Qinfeng, WANG Wenchang, et al. Affection of flex sub's position and length on the steering force of RSBHA[J]. Drilling & Production Technology, 2012, 35(1): 52–55. doi: 10.3969/J.ISSN.1006-768X.2012.01.16
    [11]
    王恒,管志川,史玉才,等. 柔性短节对推靠式旋转导向底部钻具组合造斜能力的影响分析[J]. 钻采工艺,2018,41(6):19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Effects of flex sub on build-up performance of push-the-bit RSBHA[J]. Drilling & Production Technology, 2018, 41(6): 19–22. doi: 10.3969/J.ISSN.1006-768X.2018.06.06
    [12]
    彭勇,闫文辉,李继博. 旋转导向钻井工具导向力优化设计[J]. 石油钻探技术,2006,34(2):10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003

    PENG Yong, YAN Wenhui, LI Jibo. The optimal design of the steering force for the rotary steerable drilling Tool[J]. Petroleum Drilling Techniques, 2006, 34(2): 10–14. doi: 10.3969/j.issn.1001-0890.2006.02.003
    [13]
    狄勤丰,王明杰,胡以宝,等. 柔性短节位置对带旋转导向工具底部钻具组合动力学特性的影响[J]. 中国石油大学学报(自然科学版),2012,36(5):84–88.

    DI Qinfeng, WANG Mingjie, HU Yibao, et al. Effect of flex sub's position on Bottom hole assembly with rotary steering tool[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 84–88.
    [14]
    BURGESS T M, MCDANIEL G L, DAS P K. Improving BHA tool reliability with drillstring vibration models: field experience and limitations[R]. SPE 16109, 1987.
    [15]
    DYKSTRA M W. Nonlinear drill string dynamics[D]. Tulsa: The University of Tulsa, 1996.
    [16]
    张鹤,狄勤丰,覃光煦,等. 预弯底部钻具组合横向振动响应的快速求解[J]. 石油学报,2017,38(12):1441–1447. doi: 10.7623/syxb201712012

    ZHANG He, DI Qinfeng, QIN Guangxu, et al. Quick solution method for lateral vibration response of Pre-bent bottom-hole assembly[J]. Acta Petrolei Sinica, 2017, 38(12): 1441–1447. doi: 10.7623/syxb201712012
    [17]
    李子丰. 油气井杆管柱力学及应用[M]. 北京: 石油工业出版社, 2008: 133–140.

    LI Zifeng. Tubular mechanics in oil-gas wells and its applications[M]. Beijing: Petroleum Industry Press, 2008: 133–140.
    [18]
    狄勤丰,周凤岐,赵业荣. 带可控偏心稳定器的下部钻具组合力学特性计算分析[J]. 石油钻采工艺,1999,21(4):7–11, 113.

    DI Qinfeng, ZHOU Fengqi, ZHAO Yerong. Analysis of mechanical features for low drill assembly with controllable eccentric stabilizer[J]. Oil Drilling & Production Technology, 1999, 21(4): 7–11, 113.
    [19]
    李茂生,闫相祯,高德利. 钻井液对钻柱横向振动固有频率的影响[J]. 石油大学学报(自然科学版),2004,28(6):68–71.

    LI Maosheng, YAN Xiangzhen, GAO Deli. Influence of drilling fluid on natural frequency of drill string lateral vibration[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2004, 28(6): 68–71.
    [20]
    KHULIEF Y A, Al-SULAIMAN F A, BASHMAL S. Vibration analysis of drillstrings with self-excited stick-slip oscillations[J]. Journal of Sound and Vibration, 2007, 299(3): 540–558. doi: 10.1016/j.jsv.2006.06.065
    [21]
    CAUGHEY T K, O'KELLY M E J. Classical normal modes in damped linear dynamic systems[J]. Journal of Applied Mechanics, 1965, 32(3): 583–588. doi: 10.1115/1.3627262
    [22]
    SPANOS P D, PAYNE M L. Advances in dynamic bottomhole assembly modeling and dynamic response determination[R]. SPE 23905, 1992.
  • Cited by

    Periodical cited type(23)

    1. 车继勇,丁鹏,王红月,马永刚. 组合钻具定向钻井造斜及提速技术方法. 设备管理与维修. 2024(08): 98-100 .
    2. 熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 .
    3. 汪伟,柳贡慧,李军,查春青,连威,夏铭莉. 脉动式扭转冲击钻井工具工作特性分析与测试. 石油钻探技术. 2022(05): 63-69 . 本站查看
    4. 宋周成,翟文宝,邓昌松,徐杨,徐席明,汪鑫,文涛. 富满油田超深井井身结构优化技术与应用. 钻采工艺. 2022(06): 36-41 .
    5. 王涛,刘锋报,罗威,晏智航,陆海瑛,郭斌. 塔里木油田防漏堵漏技术进展与发展建议. 石油钻探技术. 2021(01): 28-33 . 本站查看
    6. 崔月明,史海民,张清. 吉林油田致密油水平井优快钻井完井技术. 石油钻探技术. 2021(02): 9-13 . 本站查看
    7. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 .
    8. 张强,饶志华,秦世利,金勇. 南海东部深层古近系高效开发技术探索与实践. 石油化工应用. 2021(06): 34-38 .
    9. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 .
    10. 陈冬毅,徐鲲,张作伟,吕广,张鑫,郭小明. 恒压恒扭工具在渤海油田中的应用. 科学技术创新. 2021(22): 153-154 .
    11. 严德,张玉山,宋玲安,陈彬,李彬,刘保波. 深水高温高压井钻井技术探索与实践. 中国石油和化工标准与质量. 2021(13): 193-194 .
    12. 张喆,闫楚旋,冯震,脱直霖,石朝龙. 塔里木油田HLHT区块优快钻井技术研究. 云南化工. 2021(10): 127-129 .
    13. 李双贵,于洋,樊艳芳,曾德智. 顺北油气田超深井井身结构优化设计. 石油钻探技术. 2020(02): 6-11 . 本站查看
    14. 袁国栋,王鸿远,陈宗琦,母亚军,席宝滨. 塔里木盆地满深1井超深井钻井关键技术. 石油钻探技术. 2020(04): 21-27 . 本站查看
    15. 张智亮,王威,伊明,刘强. 井下安全监控系统设计与实现. 石油钻探技术. 2020(06): 65-70 . 本站查看
    16. 周波,汪海阁,张富成,纪国栋,韩泽龙,武强. 温度压力对岩石可钻性和破岩效率影响实验. 石油钻采工艺. 2020(05): 547-552 .
    17. 李林涛,万小勇,黄传艳,潘丽娟,郭知龙,曹宗波,张伟博. 双向卡瓦可回收高温高压封隔器的研制与应用. 石油机械. 2019(03): 81-86 .
    18. 路宗羽,赵飞,雷鸣,邹灵战,石建刚,卓鲁斌. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术. 石油钻探技术. 2019(02): 9-14 . 本站查看
    19. 江波,任茂,王希勇. 彭州气田PZ115井钻井提速配套技术. 探矿工程(岩土钻掘工程). 2019(08): 73-78 .
    20. 郑振国,黎红胜,赵海艳,温慧芸,孙东方. 哥伦比亚Matambo区块深井钻井关键技术. 石油钻探技术. 2018(02): 30-37 . 本站查看
    21. 丁红,宋朝晖,袁鑫伟,邢战,张宏阜,张仪. 哈拉哈塘超深定向井钻井技术. 石油钻探技术. 2018(04): 30-35 . 本站查看
    22. 李世昌,闫立鹏,李建冰,白文路,杨秀丽,闫天宇. 自循环粒子射流钻井提速工具机理研究. 中国锰业. 2018(03): 98-102 .
    23. 陈养龙,席宝滨,晁文学,朱伟厚. 顺北区块Ⅰ号断裂带钻井分层提速技术. 断块油气田. 2018(05): 649-652 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (714) PDF downloads (157) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return