SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054
Citation: SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054

Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion

More Information
  • Received Date: March 27, 2021
  • Revised Date: November 14, 2021
  • Available Online: January 21, 2022
  • When borehole trajectory parameters are measured while drilling by a measurement system of triaxial accelerometers, fluxgates, and rate gyros, the results show huge deviations due to the influence of factors such as rotation, vibration, and magnetic interference, etc. As a result, the requirements of geosteering while drilling cannot be met. Considering this, a quaternion-based measurement model of borehole trajectory parameters was built for the above measurement system. In addition, according to state equations and measurement equations, three strap-down Kalman filters and a correction system for magnetic interference were applied to filter and correct accelerometer and fluxgate signals. In this way, a dynamic measurement method of near-bit borehole trajectory parameters based on data fusion was developed. The simulations in the laboratory and on-site drilling showed that the measurement precision of borehole trajectory parameters was significantly improved by using the proposed method. The research indicates that the proposed method can eliminate the influence of rotation, vibration, and magnetic interference on the results of the measurement system of triaxial accelerometers, fluxgates, and rate gyros while drilling to upgrade the measurement precision for geosteering, thus meeting the requirements of geosteering while drilling.
  • [1]
    杨全进,徐宝昌,左信,等. 旋转导向钻具姿态的无迹卡尔曼滤波方法[J]. 石油学报,2013,34(4):1168–1175.

    YANG Quanjin, XU Baochang, ZUO Xin, et al. An unscented Kalman filter method for attitude measurement of rotary steerable drilling assembly[J]. Acta Petrolei Sinica, 2013, 34(4): 1168–1175.
    [2]
    高怡,程为彬,汪跃龙. 近钻头钻具多源动态姿态组合测量方法[J]. 中国惯性技术学报,2017,25(2):146–150.

    GAO Yi, CHENG Weibin, WANG Yuelong. Multi-source dynamic attitude combination measurement for near-bit drilling tool[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 146–150.
    [3]
    XUE Qilong, WANG Ruihe, SUN Feng. Continuous measurement while drilling utilizing strap down multi model surveying system[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(3): 650–657. doi: 10.1109/TIM.2013.2282412
    [4]
    ZHEN Ziyang, XING Dongjing, GAO Chen. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76: 402–411. doi: 10.1016/j.ast.2018.01.035
    [5]
    徐宝昌,杨全进,蒋海旭. 旋转导向系统有色噪声的改进无迹卡尔曼滤波方法[J]. 中国石油大学学报(自然科学版),2015,39(2):157–163.

    XU Baochang, YANG Quanjin, JIANG Haixu. Improved unscented Kalman filtering method for colored noises of rotary steerable system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(2): 157–163.
    [6]
    COLUCCIA A, RICCIATO F. On ML estimation for automatic RSS-based indoor localization: IEEE 5th International Symposium on Wireless Pervasive Computing, Modena, May 5-7, 2010[C].
    [7]
    OUYANG R W, WONG A K, LEA C, et al. Received signal strength-based wire-less localization via semidefinite programming: Proceedings of the Global Communications Conference, Honolulu, November 30–December 4, 2009[C].
    [8]
    高怡,汪跃龙,程为彬. 抗差自适应滤波的导向钻具动态姿态测量方法[J]. 中国惯性技术学报,2016,24(4):437–442.

    GAO Yi, WANG Yuelong, CHENG Weibin. Robust adaptive filtering method for dynamic attitude measurement of steering drilling[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 437–442.
    [9]
    鲁港,佟长海,夏泊洢,等. 空间圆弧轨迹的矢量描述技术[J]. 石油学报,2014,35(4):759–764. doi: 10.7623/syxb201404019

    LU Gang, TONG Changhai, XIA Boyi, et al. Vector description of spatial -arc well bore trajectory[J]. Acta Petrolei Sinica, 2014, 35(4): 759–764. doi: 10.7623/syxb201404019
    [10]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [11]
    陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113–120.

    LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques, 2021, 49(1): 113–120.
    [12]
    WANG Ruihe, XUE Qilong, SUN Feng. Study on lateral vibration of rotary steerable drilling system[J]. Journal of Vibroengineering, 2014, 16(6): 2702–2711.
    [13]
    XUE Qilong, HENRY L, WANG Ruihe, et al. Continuous real-time measurement of drilling trajectory with new state space models of Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(1): 144–154. doi: 10.1109/TIM.2015.2479096
    [14]
    SHAO Hujie, ZHANG Xiaoping, WANG Zhi. Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2580–2594. doi: 10.1109/TSP.2014.2314064
    [15]
    YACLAN Y, BICAN B. Empirical mode decomposition based denoising method with support vector regression for time series prediction A case study for electricity load forecasting[J]. Measurement, 2017, 103: 52–61. doi: 10.1016/j.measurement.2017.02.007
    [16]
    许昊东,黄根炉,张然,等. 磁力随钻测量磁干扰校正方法研究[J]. 石油钻探技术,2014,42(2):102–106.

    XU Haodong, HUANG Genlu, ZHANG Ran, et al. Method of magnetic interference correction in survey with magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102–106.
  • Cited by

    Periodical cited type(8)

    1. 隋明炜,高尚芳,刘建安,郑伟,宋伟,李全忠. 石楼西混合水循环压裂液体系应用. 当代化工. 2021(02): 335-338+343 .
    2. 史璨,林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨. 石油科学通报. 2021(01): 92-113 .
    3. 刘威. 大牛地气田薄储层控缝高压裂工艺技术. 断块油气田. 2021(02): 284-288 .
    4. 王娜,王蕾,龚浩研,李军,解亚鹏,李文洪. 自交联乳液混合水体系性能评价及其在鄂北致密气储层的应用. 能源化工. 2021(02): 48-53 .
    5. 陈昊,毕凯琳,张军,刘虎子,张胜,冯玉军. 非常规油气开采压裂用减阻剂研究进展. 油田化学. 2021(02): 347-359 .
    6. 闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 . 本站查看
    7. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 .
    8. 袁琴,隋明炜,王艺衡,敖科. 混合水用水相痕量示踪剂室内评价及应用. 当代化工. 2020(11): 2491-2494 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (394) PDF downloads (103) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return