YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, NI Weining, WU Jinping. The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020
Citation: YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, NI Weining, WU Jinping. The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020

The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling

More Information
  • Received Date: September 09, 2020
  • Revised Date: December 23, 2020
  • Available Online: January 04, 2021
  • As the existing acoustic logging tools cannot meet the requirements of "look-ahead" detection, the research on “look-ahead” acoustic logging-while-drilling (LWD) was performed based on the phased array technology. The directional radiation and scanning reception of acoustic energy were realized by the linear phased array (LPA) acoustic wave radiator and arcuate phased array (APA) acoustic receiver stations. The responses of monopole and phased array acoustic logging with a formation interface ahead of the drill bit are numerically simulated by the finite-difference algorithm. The results showed that the acoustic fields of “look-ahead” acoustic LWD are more complex than those of conventional acoustic reflection logging, because of the wave scattering at the well bottom. Compared with the monopole acoustic radiator, the amplitude of P-P echo can be significantly enhanced by directionally enhancing the acoustic energy radiated into the formation ahead of the drill bit with LPA acoustic wave radiator. Compared with the monopole acoustic receiver, the APA acoustic receiver station can approximately determine the azimuth of the formation interface ahead of the drill bit by analyzing the amplitude distribution of P-P echo waves in the scanning reception waveforms. The research results confirmed that detecting geological anomalies ahead of the drill bit with phased array acoustic logging is feasible, and it can provide a theoretical basis for the development of industrial prototypes.
  • [1]
    马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
    [2]
    王敏生,光新军,皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术,2018,46(6):1–8.

    WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
    [3]
    房超,项德贵,赵庆,等. 地质导向软件发展现状、趋势及国产化建议[J]. 石油钻采工艺,2020,42(4):385–392.

    FANG Chao, XIANG Degui, ZHAO Qing, et al. Development status and trend of geosteering software and the suggestions for its localization[J]. Oil Drilling & Production Technology, 2020, 42(4): 385–392.
    [4]
    林昕,苑仁国,韩雪银,等. 随钻地质导向智能决策的实现与应用[J]. 石油钻采工艺,2020,42(1):1–5.

    LIN Xin, YUAN Renguo, HAN Xueyin, et al. Realization and application of the intelligent geosteering decision making while drilling[J]. Oil Drilling & Production Technology, 2020, 42(1): 1–5.
    [5]
    史鸿祥,李辉,郑多明,等. 基于随钻地震测井的地震导向钻井技术:以塔里木油田哈拉哈塘区块缝洞型储集体为例[J]. 石油勘探与开发,2016,43(4):662–668.

    SHI Hongxiang, LI Hui, ZHENG Duoming, et al. Seismic guided drilling technique based on seismic while drilling (SWD): a case study of fracture-cave reservoirs of Halahatang Block, Tarim Oilfield, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 662–668.
    [6]
    路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234.

    LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.
    [7]
    高永德,刘鹏,杜超,等. 随钻地震技术在莺歌海盆地高温高压地层钻井中的应用[J]. 石油钻探技术,2020,48(4):63–71.

    GAO Yongde, LIU Peng, DU Chao, et al. The application of seismic while drilling in high temperature, high pressure reservoirs of the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 63–71.
    [8]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [9]
    WANG Lei, FAN Yiren. Fast inversion of logging while drilling azimuthal resistivity measurements for geosteering and formation evaluation[J]. Journal of Petroleum Science and Engineering, 2019, 176: 342–351. doi: 10.1016/j.petrol.2019.01.067
    [10]
    WANG Lei, DENG Shaogui, ZHANG Pan, et al. Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements[J]. Petroleum Science, 2019, 16: 1015–1027.
    [11]
    李亨,刘迪仁,倪小威,等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田,2019,26(5):675–680.

    LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675–680.
    [12]
    杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025

    YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-Newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025
    [13]
    黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
    [14]
    TANG Xiaoming. Imaging near-borehole structure using directional acoustic-wave measurement[J]. Geophysics, 2004, 69(6): 1378–1386. doi: 10.1190/1.1836812
    [15]
    TANG Xiaoming, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211–WCA223. doi: 10.1190/1.3227150
    [16]
    WANG Hua, TAO Guo, SHANG Xuefeng. A method to determine the strike of interface outside of borehole by monopole borehole acoustic reflections[J]. Journal of Petroleum Science and Engineering, 2015, 133: 304–312.
    [17]
    YANG Shubo, QIAO Wenxiao, CHE Xiaohua. Numerical simulation of acoustic fields in formation generated by linear phased array acoustic transmitters during logging while drilling[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106184. doi: 10.1016/j.petrol.2019.106184
    [18]
    YANG Shubo, QIAO Wenxiao, CHE Xiaohua, et al. Numerical simulation of acoustic reflection logging while drilling based on a cylindrical phased array acoustic receiver station[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106467. doi: 10.1016/j.petrol.2019.106467
    [19]
    王菁,张秀梅. 偶极声波实现钻前地质探测的方法研究[J]. 应用声学,2015,34(6):539–546.

    WANG Jing, ZHANG Xiumei. Study on the method of formation detection ahead of the drill-bit using downhole dipole source[J]. Journal of Applied Acoustics, 2015, 34(6): 539–546.
    [20]
    PAN Yue, HE Xiao, CHEN Hao, et al. Reflection signals and wellbore scattering waves in acoustic logging while drilling[J]. Journal of Geophysics and Engineering, 2020, 17(3): 552–561.
    [21]
    杨书博,乔文孝,车小花. 基于MPI和OpenMP的三维弹性波方程混合并行有限差分算法[J]. 应用声学,2018,37(1):75–82. doi: 10.11684/j.issn.1000-310X.2018.01.011

    YANG Shubo, QIAO Wenxiao, CHE Xiaohua. A hybrid parallel finite difference algorithm for 3D elastic wave equation based on MPI and OpenMP[J]. Journal of Applied Acoustics, 2018, 37(1): 75–82. doi: 10.11684/j.issn.1000-310X.2018.01.011
  • Cited by

    Periodical cited type(7)

    1. 佘朝毅. 四川盆地超深层钻完井技术进展及其对万米特深井的启示. 天然气工业. 2024(01): 40-48 .
    2. 张福铭,肖伟,朱思佳,石礼岗,赵军. 超高温高密度防腐防窜水泥浆. 钻井液与完井液. 2024(04): 506-514 .
    3. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
    4. 刘书杰,武治强,吴怡,侯铎,张智. 深水深井高温高压水泥石固化养护及制备方法研究. 石油钻采工艺. 2022(03): 291-296 .
    5. 邓虎,贾利春. 四川盆地深井超深井钻井关键技术与展望. 天然气工业. 2022(12): 82-94 .
    6. 李成全,何世明,张平. 磨溪-高石梯构造超深定向井固井水泥浆技术. 石油与天然气化工. 2020(02): 73-79 .
    7. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (609) PDF downloads (167) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return