ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106
Citation: ZHANG Xiong, YU Jin, MAO Jun, LIU Zulei. High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 21-27. DOI: 10.11911/syztjs.2020106

High-Performance Oil-Based Drilling Fluid Technology for Horizontal Wells in the Madong Oilfield, Junggar Basin

More Information
  • Received Date: March 06, 2020
  • Revised Date: August 04, 2020
  • Available Online: September 08, 2020
  • The build-up section and horizontal section drilling in horizontal wells of the Madong Oilfield, Junggar Basin was challenged by problems such as pipe-string sticking during trip operations, wellbore instability, and low ROP caused by the hydration of mudstone, abnormal pressure, and an abundance of glutenites. Therefore, high-performance oil-based drilling fluid was accordingly investigated. Based on the reservoir characteristics of the Madong Oilfield and the drilling requirements of the medium-long horizontal sections, XZ high-performance oil-based drilling fluid was hereby formulated, and indoor laboratory experiments were carried out to evaluate its weighting, temperature resistance, shear strength improving, sealing/pressure-bearing, anti-pollution and anti-freezing performances. The results showed that this oil-based drilling fluid system exhibited stable rheological properties and an adjustable shear force between the density of 1.35–2.01 kg/L. The new fluid exhibited good thermal and freezing stability, low temperature resistance of up to –24 ℃, and high temperature resistance of up to 180 ℃. The emulsification stability was good, and the demulsification voltage was generally above 1 000 V. The anti-pollution ability was strong, the anti-cuttings pollution concentration was ≥20.0%, the anti-formation water pollution concentration was ≥20.0%, and the anti-cement pollution concentration was ≥10.0%. Further, the new drilling fluid system had strong sealing ability. When using sand discs with a diameter of 120 and 150 μm for pressure-bearing sealing, the pressure-resistance of both discs could reach 15 MPa. This system was applied in 4 of the wells in the Madong Oilfield. After the application of the new fluid, perfect borehole stability was achieved, the hole enlargement rate of the build-up section was only 3.55%, the trip operation was completed smoothly, and the average ROP was 79.0% higher than that of the same horizon drilled with water-based drilling fluid. A remarkable drilling speed-up effect was observed. The research results showed that the application of XZ high-performance oil-based drilling fluid can solve the technical problems in the development of the glutenite reservoirs in the Madong Oilfield and satisfy the needs of safe and fast drilling in the long horizontal section of this oilfield.
  • [1]
    路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(2): 9–14.

    LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14.
    [2]
    秦文政,党军,臧传贞,等. 玛湖油田玛18井区“工厂化”水平井钻井技术[J]. 石油钻探技术, 2019, 47(2): 15–20.

    QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 well block of the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 15–20.
    [3]
    王海涛,张伟,王国斌,等. 准噶尔盆地环玛湖凹陷钻井提速技术[J]. 石油钻采工艺, 2014, 36(4): 30–33.

    WANG Haitao, ZHANG Wei, WANG Guobin, et al. ROP enhancing technology for circum-mahu lake depression in Junggar Basin[J]. Oil Drilling & Production Technology, 2014, 36(4): 30–33.
    [4]
    李洪,邹灵战,汪海阁,等. 玛湖致密砂砾岩2 000 m水平段水平井优快钻完井技术[J]. 石油钻采工艺, 2017, 39(1): 47–52.

    LI Hong, ZOU Lingzhan, WANG Haige, et al. High-quality fast drilling and completion technologies for horizontal wells with horizontal section of 2 000 m long in Mahu tight glutenites[J]. Oil Drilling & Production Technology, 2017, 39(1): 47–52.
    [5]
    于洋飞,杨光,陈涛,等. 新疆玛湖区块2 000 m长水平段水平井钻井技术[J]. 断块油气田, 2017, 24(5): 727–730.

    YU Yangfei, YANG Guang, CHEN Tao, et al. Drilling technology of 2 km-long horizontal section in Mahu Block, Xinjiang Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(5): 727–730.
    [6]
    谢军,何勇,王安鹤,等. 克拉玛依油田八区调整井钻井液技术[J]. 钻井液与完井液, 2007, 24(1): 88–91.

    XIE Jun, HE Yong, WANG Anhe, et al. Drilling fluid technology used in drilling adjustment wells in Block 8 in Karamay Oilfield[J]. Drilling Fluid & Completion Fluid, 2007, 24(1): 88–91.
    [7]
    吴江,李龙,任冠龙,等. 海上复杂易垮塌地层高性能油基钻井液研发与应用[J]. 钻井液与完井液, 2018, 35(5): 55–60.

    WU Jiang, LI Long, REN Guanlong, et al. Development and application of a high performance oil base drilling fluid for drilling complex sloughing formations in offshore operations[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 55–60.
    [8]
    王中华. 国内钻井液技术进展评述[J]. 石油钻探技术, 2019, 47(3): 95–102.

    WANG Zhonghua. Review of progress on drilling fluid technology in China[J]. Petroleum Drilling Techniques, 2019, 47(3): 95–102.
    [9]
    何振奎. 泌页 HF1井油基钻井液技术[J]. 石油钻探技术, 2012, 40(4): 32–37.

    HE Zhenkui. Oil base drilling fluid technology applied in Well Biye HF 1[J]. Petroleum Drilling Techniques, 2012, 40(4): 32–37.
    [10]
    林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术, 2014, 42(4): 7–13.

    LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
    [11]
    王显光,李雄,林永学. 页岩水平井用高性能油基钻井液研究与应用[J]. 石油钻探技术, 2013, 41(2): 17–22.

    WANG Xianguang, LI Xiong, LIN Yongxue. Research and application of high performance oil base drilling fluid for shale horizontal wells[J]. Petroleum Drilling Techniques, 2013, 41(2): 17–22.
  • Related Articles

    [1]LI Shuanggui, LUO Jiang, YU Yang, TANG Ming, YI Hao, ZENG Dezhi. Establishing Pressure Profiles and Casing Program Optimization in the Southern Shunbei No. 5 Fault Zone[J]. Petroleum Drilling Techniques, 2023, 51(1): 9-15. DOI: 10.11911/syztjs.2022037
    [2]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [3]WANG Jianyun, HAN Tao, ZHAO Kuanxin, ZHANG Lijun, XI Baobin, YE Xiang. Key Drilling Technologies for the Ultra-Deep Well Tashen 5[J]. Petroleum Drilling Techniques, 2022, 50(5): 27-33. DOI: 10.11911/syztjs.2022074
    [4]LIU Huamin, LI Mu, LIU Qiaoping, ZHANG Liyuan. Research and Application of Plunger Gas Lift Technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(3): 102-107. DOI: 10.11911/syztjs.2020022
    [5]CUI Hailin, ZHOU Yanjun, TANG Honglin, CAO Liming, SUN Ronghua, XIAO Xinlei. Integrated Wellbore Technologies to Enhance the Rate of Penetration for Well Dingye 5[J]. Petroleum Drilling Techniques, 2018, 46(1): 24-29. DOI: 10.11911/syztjs.2018029
    [6]LI Shan. Casing Optimization for CO2 Corrosion Resistance in the Xushen Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 55-59. DOI: 10.11911/syztjs.201606009
    [7]GAO Yingyun. Fracturing Technology for a V-Shaped Horizontal Well Cluster in the Yanchuannan CBM Field[J]. Petroleum Drilling Techniques, 2016, 44(3): 83-87. DOI: 10.11911/syztjs.201603015
    [8]Zhao Chongzhen. Network Fracturing Technology Applied to Xu 5 Tight Gas Reservoirs in the Xinchang Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(6): 70-75. DOI: 10.11911/syztjs.201506013
    [9]Su Feng, Zhang Weiguo, Li Zemin, Chang Yuanjiang, Chen Guoming. Application of Underwater GPS Positioning Technique in Wellhead Positioning of Liuhua 4-1 Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 40-45. DOI: 10.3969/j.issn.1001-0890.2013.03.008
    [10]Wang Lihua, Lou Yishan, Deng Jingen, Ma Xiaoyong, Chen Yu. Optimization of Sand Control Methods and Parameters Selection for Shallow-Gas Fields in Deep-Water[J]. Petroleum Drilling Techniques, 2013, 41(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2013.01.019

Catalog

    Article Metrics

    Article views (739) PDF downloads (100) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return