Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media
-
Graphical Abstract
-
Abstract
In order to provide clarity in the microscopic oil displacement mechanisms of tight reservoirs displaced by different gas injection media, core displacement experiments of N2 and CO2 injection were carried out respectively based on the principle of NMR T2 spectrum test. The microscopic displacement mechanisms of N2 immiscible flooding and CO2 miscible flooding were studied at the microscopic pore scale, and the oil production from pores with different pore sizes during displacement was evaluated. The results show that final recovery percent from N2 immiscible flooding and CO2 miscible flooding has little difference. The N2 flooding process can be divided into three stages: the non-breakthrough stage, the early breakthrough stage and the mid-late breakthrough stage. The recovery percent from small pores is higher than that from large pores. However, the oil recovery percent from large pores is greatly improved in CO2 miscible flooding, while it is relatively low from small pores. The distribution of microscopic pore structure is the main cause for the difference in recovery percent between large and small pores in the process of N2 and CO2 flooding. The results show that the development effect of N2 flooding in tight reservoirs is better than that of CO2 flooding, which provides a theoretical basis for the development of Chang 6 reservoir by N2 flooding in Ansai Oilfield .
-
-