XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114-119. DOI: 10.11911/syztjs.2020064
Citation: XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114-119. DOI: 10.11911/syztjs.2020064

The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index

More Information
  • Received Date: October 24, 2019
  • Revised Date: April 27, 2020
  • Available Online: May 07, 2020
  • The tight oil reservoirs in the Chang 6-8 Member of the Triassic Yanchang Formation in the Ordos Basin are characterized by low porosity, low permeability, low pressure and low production. In order to optimize the geological engineering sweet spots on the single-well section, a practical method for standard division of tight oil reservoirs has been proposed in accordance with the geological characteristics of Chang 6-8 tight oil reservoir. The first step involved calculating and extracting the minimum horizontal principal stress, fracture pressure, brittleness index, porosity, permeability and water saturation of reservoir etc. This allows them to establish the comprehensive evaluation index of the reservoir completion quality (CQ), and then, to classify the reservoirs “good, medium and bad” based on the relationship chart of CQ and single well productivity. And then to optimize the perforating and fracturing intervals in terms of the CQ value. Using this method, reservoir division was performed in Well L375 of the Changqing Longdong Area, and the comparison of division result and the oil test result showed that the perforating/fracturing interval optimized by the CQ index was completely consistent with the actual intervals of high, medium and low production-yields. Study results also indicated that this method could meet the requirements for optimizing the perforating/fracturing intervals of tight oil and and for identifying engineering geological sweet spots, and can be used for a classification standard for block reservoirs.

  • [1]
    黄鑫,董秀成,肖春跃,等. 非常规油气勘探开发现状及发展前景[J]. 天然气与石油, 2012, 30(6): 38–41.

    HUANG Xin, DONG Xiucheng, XIAO Chunyue, et al. Present situation and development prospect of unconventional oil and gas exploration and development[J]. Natural Gas and Oil, 2012, 30(6): 38–41.
    [2]
    杨双定. 鄂尔多斯盆地致密砂岩气层测井评价新技术[J]. 天然气工业, 2005, 25(9): 45–47. doi: 10.3321/j.issn:1000-0976.2005.09.015

    YANG Shuangding. New methods of log evaluation of the tight sandstone gas reservoirs in E’erduosi Basin[J]. Natural Gas Industry, 2005, 25(9): 45–47. doi: 10.3321/j.issn:1000-0976.2005.09.015
    [3]
    楼一珊, 金业权.岩石力学与石油工程[M].北京: 石油工业出版社, 2006.

    LOU Yishan, JIN Yequan. Rock mechanics and petroleum engineering[M]. Beijing: Petroleum Industry Press, 2006.
    [4]
    王团. 致密砂岩储层中优质储层的划分及识别方法研究[J]. 国外测井技术, 2015(3): 26–29.

    WANG Tuan. Research on the division and identification of high-quality reservoir in tight sandstone reservoir[J]. World Well Logging Technology, 2015(3): 26–29.
    [5]
    杜金虎,刘合,马德胜,等. 试论中国陆相致密油有效开发技术[J]. 石油勘探与开发, 2014, 41(2): 198–204. doi: 10.11698/PED.2014.02.09

    DU Jinhu, LIU He, MA Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2): 198–204. doi: 10.11698/PED.2014.02.09
    [6]
    赖锦,王贵文,范卓颖,等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3): 330–341.

    LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3): 330–341.
    [7]
    夏宏泉,杨双定,弓浩浩,等. 岩石脆性实验及压裂缝高度与宽度测井预测[J]. 西南石油大学学报(自然科学版), 2013, 35(4): 81–89. doi: 10.3863/j.issn.1674-5086.2013.04.011

    XIA Hongquan, YANG Shuangding, GONG Haohao, et al. Research on rock brittleness experiment and logging prediction of hydraulic fracture height & width[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(4): 81–89. doi: 10.3863/j.issn.1674-5086.2013.04.011
    [8]
    林英松,葛洪魁,王顺昌. 岩石动静力学参数的试验研究[J]. 岩石力学与工程学报, 1998, 17(2): 216–222. doi: 10.3321/j.issn:1000-6915.1998.02.019

    LIN Yingsong, GE Hongkui, WANG Shunchang. Testing study on dynamic and static elastic parameters of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(2): 216–222. doi: 10.3321/j.issn:1000-6915.1998.02.019
    [9]
    周新桂,张林炎,范昆,等. 鄂尔多斯盆地现今地应力测量及其在油气开发中的应用[J]. 西安石油大学学报(自然科学版), 2009, 24(3): 7–12.

    ZHOU Xingui, ZHANG Linyan, FAN Kun, et al. Measurement of the present earth stress of Ordos Basin and its applications in oil and gas exploitation[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(3): 7–12.
    [10]
    夏宏泉,刘畅,李高仁,等. 基于测井资料的TIV地层水平地应力计算方法[J]. 石油钻探技术, 2019, 47(6): 67–72. doi: 10.11911/syztjs.2019130

    XIA Hongquan, LIU Chang, LI Gaoren, et al. A logging data-based calculation method for the horizontal TIV formation in-situ stress[J]. Petroleum Drilling Techniquest, 2019, 47(6): 67–72. doi: 10.11911/syztjs.2019130
    [11]
    李传亮,孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014

    LI Chuanliang, KONG Xiangyan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling & Production Technology, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014
    [12]
    HIGGINS S, GOODWIN S, DONALD A, et al. Anisotropic stress models improve completion design in the Baxter Shale[R]. SPE 115736, 2008.
    [13]
    李映艳,钱根葆,高阳,等. 准噶尔盆地玛湖凹陷百口泉组砾岩致密油藏地质“甜点”分级标准及应用[J]. 东北石油大学学报, 2018, 42(6): 85–94. doi: 10.3969/j.issn.2095-4107.2018.06.009

    LI Yingyan, QIAN Genbao, GAO Yang, et al. Identification criterion of the geological "sweet point" of conglomerate tight reservoir and its application of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2018, 42(6): 85–94. doi: 10.3969/j.issn.2095-4107.2018.06.009
    [14]
    夏宏泉,文晓峰,冯春珍,等. 基于测井信息的致密油层射孔优化选层方法研究[J]. 测井技术, 2017, 41(3): 353–357.

    XIA Hongquan, WEN Xiaofeng, FENG Chunzhen, et al. Optimal selecting interval method of tight oil reservoir perforating based on well logging information[J]. Well Logging Technology, 2017, 41(3): 353–357.
    [15]
    吴飞鹏,蒲春生,陈德春,等. 射孔油井产能计算模型研究[J]. 石油钻探技术, 2008, 36(1): 69–72. doi: 10.3969/j.issn.1001-0890.2008.01.019

    WU Feipeng, PU Chunsheng, CHEN Dechun, et al. Productivity calculation model of perforated oil wells[J]. Petroleum Drilling Techniques, 2008, 36(1): 69–72. doi: 10.3969/j.issn.1001-0890.2008.01.019
  • Related Articles

    [1]SUN Huan, ZHU Mingming, YANG Yongping, WANG Weiliang, WANG Kai, ZHAO Xiangyang. Comprehensive Leakage Control Technology for Shale Gas Wells in Western Margin Thrust Zone of Ordos Basin[J]. Petroleum Drilling Techniques, 2025, 53(1): 49-54. DOI: 10.11911/syztjs.2024117
    [2]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [3]ZHANG Kuangsheng, QI Yin, XUE Xiaojia, TAO Liang, CHEN Wenbin, WU An’an. CO2 Regional Enhanced Volumetric Fracturing Technology for Shale Oil Horizontal Wells in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 15-22. DOI: 10.11911/syztjs.2023091
    [4]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [5]JIA Jia, XIA Zhongyue, FENG Lei, LI Jian, WANG Yang. Key Technology of Optimized and Fast Slim Hole Drilling in Shenfu Block, Ordos Basin[J]. Petroleum Drilling Techniques, 2022, 50(2): 64-70. DOI: 10.11911/syztjs.2021110
    [6]ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, TAO Liang. Practice and Development Suggestions for Volumetric Fracturing Technology for Shale Oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85-91. DOI: 10.11911/syztjs.2021075
    [7]HE Zuqing, LIANG Chengchun, PENG Hanxiu, ZHU Ming, HE Tong. Research and Tests on Horizontal Well Smart Layering Exploiting Technology in Tight Oil Reservoirs in Southern Ordos Basin[J]. Petroleum Drilling Techniques, 2017, 45(3): 88-94. DOI: 10.11911/syztjs.201703016
    [8]WANG Guangtao, XU Chuangchao, CAO Zongxiong, GUO Xiaoyong. A Sand Control Downhole Fracturing Technique for Tight Reservoir Development in the Ordos Basin[J]. Petroleum Drilling Techniques, 2016, 44(5): 84-89. DOI: 10.11911/syztjs.201605014
    [9]Qin Jinli, Chen Zuo, Yang Tongyu, Dai Wenchao, Wu Chunfang. Technology of Staged Fracturing with Multi-Stage Sleeves for Horizontal Wells in the Ordos Basin[J]. Petroleum Drilling Techniques, 2015, 43(1): 7-12. DOI: 10.11911/syztjs.201501002
    [10]Guo Wenmeng, Dang Donghong, Zhu Zexin, Xu Minghui, Chen Guang, Huang Xia. Cementing Techniques of Mono-Bore Well Completion in Yishan Slope of Ordos Basin[J]. Petroleum Drilling Techniques, 2014, 42(4): 75-78. DOI: 10.3969/j.issn.1001-0890.2014.04.014
  • Cited by

    Periodical cited type(18)

    1. 罗宪波. 海上砂砾岩油藏层间与层内干扰实验研究. 油气藏评价与开发. 2024(01): 117-123+132 .
    2. 杨春城,王良,顾明勇,卢澍韬,宋景杨. 不同支撑剂组合方式下页岩导流能力实验评价. 中外能源. 2024(03): 52-56 .
    3. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 .
    4. 傅超,杨进,刘华清,殷启帅,王磊,胡志强. 多维度深水浅层建井方式优选方法研究. 石油钻探技术. 2024(03): 40-46 . 本站查看
    5. 袁建强. 济阳坳陷页岩油多层立体开发关键工程技术. 石油钻探技术. 2023(01): 1-8 . 本站查看
    6. 郭照越,孔祥伟,陈峥嵘,甘洲,叶佳杰. 东海低渗区压裂诱导应力分析及施工参数优化. 石油化工应用. 2023(03): 58-63 .
    7. 李跃纲,宋毅,黎俊峰,黄永智,张静,邵莎睿. 北美页岩气水平井压裂井间干扰研究现状与启示. 天然气工业. 2023(05): 34-46 .
    8. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    9. 孙鑫,刘礼军,侯树刚,戴彩丽,杜焕福,王春伟. 基于页岩油水两相渗流特性的油井产能模拟研究. 石油钻探技术. 2023(05): 167-172 . 本站查看
    10. 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 . 本站查看
    11. Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 .
    12. 邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 . 本站查看
    13. 蔡萌,唐鹏飞,魏旭,刘宇,张浩,张宝岩,耿丹丹. 松辽盆地古龙页岩油复合体积压裂技术优化. 大庆石油地质与开发. 2022(03): 156-164 .
    14. 付亚荣,陈劲松,张睿荫,师璐,唐敬,王新梅,曹小娟,钱洪霞,刘若兮,李战华. 分层采油前层间干扰系数表征. 石油石化节能. 2022(05): 1-3+7 .
    15. 李虹,于海洋,杨海烽,邓彤,李旭,吴阳. 裂缝性非均质致密储层自适应应力敏感性研究. 石油钻探技术. 2022(03): 99-105 . 本站查看
    16. 程正华,艾池,张军,严茂森,陶飞宇,白明涛. 胶结型天然裂缝对水力压裂裂缝延伸规律的影响. 新疆石油地质. 2022(04): 433-439 .
    17. 吴峙颖,胡亚斐,蒋廷学,张保平,姚奕明,董宁. 孔洞型碳酸盐岩储层压裂裂缝转向扩展特征研究. 石油钻探技术. 2022(04): 90-96 . 本站查看
    18. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1300) PDF downloads (56) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return