WANG Xuelong, HE Xuanpeng, LIU Xianfeng, CHENG Tianhui, LI Ruiliang, FU Qiang. Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15-20. DOI: 10.11911/syztjs.2020028
Citation: WANG Xuelong, HE Xuanpeng, LIU Xianfeng, CHENG Tianhui, LI Ruiliang, FU Qiang. Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15-20. DOI: 10.11911/syztjs.2020028

Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field

More Information
  • Received Date: October 21, 2019
  • Revised Date: December 17, 2019
  • Available Online: December 27, 2019
  • The Tarim Keshen 9 Gas Field shows the typical characteristics of ultra-deep, high temperature and high pressure environments. During the drilling process, challenges such as complex geological structures, long drilling period, the coexistence of high-pressure saline and weak leakage layers in the salt-gypsum layer, difficulty in the anti-slanting and rapid drilling of high steep post-salt strata, and low ROP in the Jedick formation and tight sandstone reservoir. To overcome the problems, vertical drilling tools and optimized high-efficiency PDC bit were piloted in the post-salt strata; high-density oil-based drilling fluid, pressure management water drainage and safe drilling technologies were used in the salt-gypsum layer; 360° rotating teeth bit, turbine + impregnated bit speed-up drilling technologies were used in tight sandstone reservoirs. The combination of the above technologies constituted the key drilling technologies for complex ultra-deep wells in the Tarim Keshen 9 Gas Field. Those key technologies achieved significant field application effects. The average drilling period in the Keshen 9 Gas Field was reduced by 12.0%, the accident complex time efficiency was reduced by 4.1%, and the average ROP was increased by 13.0%. The results showed that the key technology of complex ultra-deep well drilling had high application value to increase the drilling speed and reduce the complexity in Keshen 9 Gas Field

  • [1]
    王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2): 153–166. doi: 10.11764/j.issn.1672-1926.2014.02.0153

    WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2): 153–166. doi: 10.11764/j.issn.1672-1926.2014.02.0153
    [2]
    能源,谢会文,孙太荣,等. 克拉苏构造带克深段构造特征及其石油地质意义[J]. 中国石油勘探, 2013, 18(2): 1–6. doi: 10.3969/j.issn.1672-7703.2013.02.001

    NENG Yuan, XIE Huiwen, SUN Tairong, et al. Structural characteristics of Keshen segmentation in Kelasu Structural Belt and its petroleum geological significance[J]. China Petroleum Exploration, 2013, 18(2): 1–6. doi: 10.3969/j.issn.1672-7703.2013.02.001
    [3]
    滕学清,陈勉,杨沛,等. 库车前陆盆地超深井全井筒提速技术[J]. 中国石油勘探, 2016, 21(1): 76–88. doi: 10.3969/j.issn.1672-7703.2016.01.008

    TENG Xueqing, CHEN Mian, YANG Pei, et al. Whole well ROP enhancement technology for super-deep wells in Kuqa Foreland Basin[J]. China Petroleum Exploration, 2016, 21(1): 76–88. doi: 10.3969/j.issn.1672-7703.2016.01.008
    [4]
    刘生春,阳松宇,单法铭,等. 深层膏泥岩盖层岩石力学性质实验分析[J]. 断块油气田, 2018, 25(5): 635–638.

    LIU Shengchun, YANG Songyu, SHAN Faming, et al. Rock mechanics properties experiment and analysis of deep gypsum cap rocks[J]. Fault-Block Oil & Gas Field, 2018, 25(5): 635–638.
    [5]
    江同文,滕学清,杨向同,等. 塔里木盆地克深8超深超高压裂缝性致密砂岩气藏快速、高效建产配套技术[J]. 天然气工业, 2016, 36(10): 1–9. doi: 10.3787/j.issn.1000-0976.2016.10.001

    JIANG Tongwen, TENG Xueqing, YANG Xiangtong, et al. Integrated techniques for rapid and highly-efficient development and production of ultra-deep tight sand gas reservoirs of Keshen 8 Block in the Tarim Basin[J]. Natural Gas Industry, 2016, 36(10): 1–9. doi: 10.3787/j.issn.1000-0976.2016.10.001
    [6]
    张锦虹,宋玥,刘书勤,等. Power-V在克深102井膏盐岩层中的应用[J]. 石油钻采工艺, 2015, 37(6): 13–17.

    ZHANG Jinhong, SONG Yue, LIU Shuqin, et al. Application of Power-V in gypsum-salt rock[J]. Oil Drilling & Production Technology, 2015, 37(6): 13–17.
    [7]
    胡群爱,孙连忠,张进双,等. 硬地层稳压稳扭钻井提速技术[J]. 石油钻探技术, 2019, 47(3): 107–112. doi: 10.11911/syztjs.2019053

    HU Qun’ai, SUN Lianzhong, ZHANG Jinshuang, et al. Technology for drilling speed increase using stable WOB/torque for hard formations[J]. Petroleum Drilling Techniques, 2019, 47(3): 107–112. doi: 10.11911/syztjs.2019053
    [8]
    汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验[J]. 石油钻探技术, 2018, 46(2): 58–62.

    WANG Weitao. Design and test of a new PDC bit with tapered auxiliary cutter for heterogeneous formations[J]. Petroleum Drilling Techniques, 2018, 46(2): 58–62.
    [9]
    闫炎,管志川,玄令超,等. 复合冲击条件下PDC钻头破岩效率试验研究[J]. 石油钻探技术, 2017, 45(6): 24–30.

    YAN Yan, GUAN Zhichuan, XUAN Lingchao, et al. Experimental study on rock breaking efficiency with a PDC bit under conditions of composite percussion[J]. Petroleum Drilling Techniques, 2017, 45(6): 24–30.
    [10]
    冯洁,宋岩,姜振学,等. 塔里木盆地克深区巴什基奇克组砂岩成岩演化及主控因素[J]. 特种油气藏, 2017, 24(1): 70–75. doi: 10.3969/j.issn.1006-6535.2017.01.014

    FENG Jie, SONG Yan, JIANG Zhenxue, et al. Diagenetic evolution and major controlling factors for sandstone in Bashijiqike Formation of the Keshen Area in the Tarim Basin[J]. Special Oil & Gas Reservoirs, 2017, 24(1): 70–75. doi: 10.3969/j.issn.1006-6535.2017.01.014
    [11]
    何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺, 2019, 41(1): 1–7.

    HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag Tectonic Belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.
    [12]
    王树超,王维韬,雨松,等. 塔里木山前井涡轮配合孕镶金刚石钻头钻井提速技术[J]. 石油钻采工艺, 2016, 38(2): 156–159.

    WANG Shuchao, WANG Weitao, YU Song, et al. Combination of turbodrill and impregnated diamond bit to enhance ROP in drilling of wells in piedmont zone, Tarim Basin[J]. Oil Drilling & Production Technology, 2016, 38(2): 156–159.
    [13]
    吴应凯,石晓兵,陈平,等. 深部盐膏层安全钻井技术的现状及发展方向研究[J]. 天然气工业, 2004, 24(2): 67–69. doi: 10.3321/j.issn:1000-0976.2004.02.020

    WU Yingkai, SHI Xiaobing, CHEN Ping, et al. Status quo and development of safety drilling techniques for deep evaporite beds[J]. Natural Gas Industry, 2004, 24(2): 67–69. doi: 10.3321/j.issn:1000-0976.2004.02.020
    [14]
    尹达,叶艳,李磊,等. 塔里木山前构造克深7井盐间高压盐水处理技术[J]. 钻井液与完井液, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002

    YIN Da, YE Yan, LI Lei, et al. High pressure salt water treatment technology of Well Keshen7 in foothill structural zone of Tarim[J]. Drilling Fluid & Completion Fluid, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002
    [15]
    王洪浩,李江海,维波,等. 库车克拉苏构造带地下盐岩变形特征分析[J]. 特种油气藏, 2016, 23(4): 20–24. doi: 10.3969/j.issn.1006-6535.2016.04.004

    WANG Honghao, LI Jianghai, WEI Bo, et al. Deformation behavior of underground salt rock in Kuqa Kelasu Tectonic Zone[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 20–24. doi: 10.3969/j.issn.1006-6535.2016.04.004
    [16]
    张跃,张博,吴正良,等. 高密度油基钻井液在超深复杂探井中的应用[J]. 钻采工艺, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28

    ZHANG Yue, ZHANG Bo, WU Zhengliang, et al. Application of high density oil-base drilling fluid in Keshen Well 7 of Tarim Oilfield[J]. Drilling & Production Technology, 2013, 36(6): 95–97. doi: 10.3969/J.ISSN.1006-768X.2013.06.28
  • Related Articles

    [1]JI Zhaosheng, YUAN Guodong, CHAO Wenxue, JIANG Jinbao, BAI Wangdong. Key Technology for Speeding up and Improving Efficiency of Ultra-Deep Slim-Hole Directional Drilling in Tarim Basin[J]. Petroleum Drilling Techniques, 2024, 52(4): 8-14. DOI: 10.11911/syztjs.2024064
    [2]JIN Junbin, DONG Xiaoqiang, WANG Weiji, ZHANG Dujie. Drilling Fluid Technology for Complex Deep Cambrian Formationsin Tarim Basin[J]. Petroleum Drilling Techniques, 2024, 52(2): 165-173. DOI: 10.11911/syztjs.2024042
    [3]SHU Yiyong, SUN Jun, ZENG Dong, XU Sixu, ZHOU Huaan, XI Yunfei. Study and Field Test of Drilling Fluid with Constant Rheology at High Temperature in West Yueman Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(5): 39-45. DOI: 10.11911/syztjs.2021037
    [4]TIAN Zengyan, YANG Hewei, LI Xiaohan, YIN Li, WANG Xin, HUANG Chen. Drilling Fluid Technology for Horizontal Shale Oil Wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59-65. DOI: 10.11911/syztjs.2021012
    [5]WANG Tao, LIU Fengbao, LUO Wei, YAN Zhihang, LU Haiying, GUO Bin. The Technical Advance and Development Suggestions for Leakage Prevention and Plugging Technologies in the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(1): 28-33. DOI: 10.11911/syztjs.2020080
    [6]YUAN Guodong, WANG Hongyuan, CHEN Zongqi, MU Yajun, XI Baobin. Key Drilling Technologies for the Ultra-Deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21-27. DOI: 10.11911/syztjs.2020067
    [7]WANG Jianhua, YAN Lili, XIE Sheng, ZHANG Jiaqi, YANG Haijun. Oil-Based Drilling Fluid Technology for High Pressure Brine Layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29-33. DOI: 10.11911/syztjs.2020007
    [8]LIU Wei, ZHOU Yingcao, SHI Xitian, WANG Ying, LEI Wanneng, LI Mu. Precise Managed Pressure Drilling Technology for Ultra-High Pressure Brine Layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23-28. DOI: 10.11911/syztjs.2020034
    [9]LI Ning, ZHOU Xiaojun, ZHOU Bo, YANG Chengxin, BAI Dengxiang, HE Shiming. Technologies for Fast Drilling Ultra-Deep Wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10-14. DOI: 10.11911/syztjs.201702002
    [10]Song Zhonghua, Zhang Shicheng, Wang Tengfei, Shen Jianxin, Duan Yuming, Liu Lanying. Downhole Throttling Technology for Gas Hydrate Prevention in Deep Gas Wells of Tarim Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 91-96. DOI: 10.3969/j.issn.1001-0890.2014.02.018
  • Cited by

    Periodical cited type(17)

    1. Wendong Yang,Xiang Zhang,Bingqi Wang,Jun Yao,Pathegama G.Ranjith. Experimental study on the physical and mechanical properties of carbonatite rocks under high confining pressure after thermal treatment. Deep Underground Science and Engineering. 2025(01): 105-118 .
    2. 范翔宇,蒙承,张千贵,马天寿,李柱正,王旭东,张惊喆,赵鹏斐,邓健,周桂全. 超深地层井壁失稳理论与控制技术研究进展. 天然气工业. 2024(01): 159-176 .
    3. 黄崇辉,石广远,范东阳,全美荣,黄世强,蔡敬耀,郝鹏. 耐高温型聚合物压裂液体系研制与性能评价. 油气田地面工程. 2024(03): 36-41+48 .
    4. 仇常凯,蒋凯,王兵. 克拉苏构造带超深盐下大斜度井钻井关键技术. 石油钻采工艺. 2024(01): 45-52 .
    5. 闫家,梁健,王文,王瑜,张凯,张恒春,曹龙龙,吴纪修,王志刚. 深井高速涡轮钻配套同径取心技术研究. 钻探工程. 2024(04): 23-30 .
    6. 王春华,孙则鑫,丁扬扬,王立朝,许博文,张海涛,王昶皓. 塔东区块庆玉1井超深井优快钻井技术. 石油矿场机械. 2024(05): 59-65 .
    7. 徐力群,李洪涛,杨桃,杜河山,邹林兵. 控压放水技术在超高压超强蠕变软泥岩钻井中的应用. 石油工业技术监督. 2024(10): 43-47 .
    8. 翁炜,吴烁,贺云超,蔺文静,冯美贵,甘浩男,李晓东. 高温硬岩受控钻进新技术、新方法及应用. 地学前缘. 2024(06): 120-129 .
    9. 崔富凯,曹宇光,倪红坚,张恒. 基于冲击振动疲劳分析的自动垂钻与多维减振联合提速系统冲击频率优选. 中国科技论文. 2023(04): 443-448+468 .
    10. 刘湘华. 基于正交试验法的高温封隔器镶齿卡瓦优化. 石油机械. 2023(07): 96-103 .
    11. 杨宏伟,李军,刘金璐,柳贡慧,高旭,赵轩刚. 影响控压放水施工效果的关键参数模拟研究. 石油钻探技术. 2022(02): 85-91 . 本站查看
    12. 赵欣,孙昊,邱正松,黄维安,徐加放,钟汉毅. 复合盐层多元协同稳定井壁钻井液技术. 深圳大学学报(理工版). 2022(06): 668-674 .
    13. 滕学清,刘洪涛,李宁,王天博,汝大军,董仁. 塔里木博孜区块超深井自动垂直钻井难点与技术对策. 石油钻探技术. 2021(01): 11-15 . 本站查看
    14. 周建平,杨战伟,徐敏杰,王丽伟,姚茂堂,高莹. 工业氯化钙加重胍胶压裂液体系研究与现场试验. 石油钻探技术. 2021(02): 96-101 . 本站查看
    15. 宗世玉,邹林兵,史方,苗冬,杨桃,王卫阳. 塔里木盆地库车山前盐膏层钻井技术应用. 石油工业技术监督. 2021(10): 14-16+29 .
    16. 王涛,和鹏飞,宫吉泽,葛俊瑞. 东海深井超深井定向钻完井关键技术. 石油钻采工艺. 2020(05): 578-582 .
    17. 马鸿彦,郑邦贤,陈景旺,郭劲松,宋晓健,李和清. 杨税务潜山超深超高温井安全优快钻井技术. 石油钻采工艺. 2020(05): 573-577 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1328) PDF downloads (146) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return