HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132
Citation: HUANG Mingquan, YANG Zhen. Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114-119. DOI: 10.11911/syztjs.2019132

Simulation to Determine Depth of Detection and Response Characteristics while Drilling of an Ultra-Deep Electromagnetic Wave Instrument

More Information
  • Received Date: February 17, 2019
  • Revised Date: October 13, 2019
  • Available Online: December 27, 2019
  • Studying the boundary detection depth while drilling for different antenna combinations is the primary objective of developing ultra-deep electromagnetic wave instruments. The numerical simulation method has been used to study the boundary detection depth and response characteristics of three kinds of receiving antennas: axial antenna, horizontal antenna and tilted antenna. The simulation analysis suggested that the detection depth while drilling for the ultra-deep electromagnetic wave instrument was related to the antenna spacing, operating frequency and the formation resistivity contras. Further, it became clear that different electromagnetic field components had different response characteristics to the formation interface, and the axial resistivity measurement of ultra-deep detector was more likely to be affected by adjacent layers than the conventional electromagnetic waves. When the horizontal receiving antenna was used, the smaller the antenna spacing and the higher the operating frequency, the larger the potential signal amplitude of directional electromotive force. Then, when the tilted receiving antenna was used, the larger the antenna spacing and the higher the operating frequency, the larger the potential relative directional signal amplitude. While using the ultra-deep electromagnetic wave instrument while drilling, the antenna spacing should be small when the horizontal receiving antenna is used, and the distance should be large when the tilted receiving antenna is used. Further, the combination of multiple frequencies and antenna spacing can increase the detection depth while drilling and therefore, the adaptability to the formation resistivity of ultra-deep electromagnetic wave instrument. By reducing the operating frequency and increasing the antenna spacing, the detection depth of ultra-deep electromagnetic wave instrument while drilling can reach 20−30 m. The study showed that the detection depth could bridge the gap between seismic and well logging, and make it possible to describe the oil reservoir while drilling.

  • [1]
    高永德,陈鸣,蔡建荣,等. 基于地层边界探测的主动型地质导向技术在南海西部复杂油层中的应用[J]. 中国海上油气, 2014, 26(5): 63–69.

    GAO Yongde, CHEN Ming, CAI Jianrong, et al. An application of the active geosteering technique based on stratigraphic-boundary detection in complex reservoirs in the Western South China Sea[J]. China Offshore Oil and Gas, 2014, 26(5): 63–69.
    [2]
    康俊佐,邢光龙,杨善德. 多传播电阻率测井的探测能力与资料处理方法[J]. 石油勘探与开发, 2006, 33(3): 345–350. doi: 10.3321/j.issn:1000-0747.2006.03.018

    KANG Junzuo, XING Guanglong, YANG Shande. Detective ability and data processing method of the MPR logging[J]. Petroleum Exploration and Development, 2006, 33(3): 345–350. doi: 10.3321/j.issn:1000-0747.2006.03.018
    [3]
    张辛耘,王敬农,郭彦君. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002
    [4]
    FANG S, MERCHANT G A, HART E, et al. Determination of structural dip and azimuthal from LWD azimuthal propagation resistivity measurements in anisotropic formations[R]. SPE 116123, 2008.
    [5]
    YIN Hezhu, KUMIAWAN B. Resistivity a isotropy models and multi-component induction measurements: impact on Sw and uncertainty 0 Hpv estimation[R]. SPWLA-2008-LLLL, 2008.
    [6]
    LI Shanjun, CHEN Jiefu, BINFORD T L Jr. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
    [7]
    杨震,马清明,杨宁宁,等. 基于正交天线的随钻方位电磁波电阻率成像响应特征模拟[J]. 石油学报, 2018, 39(9): 1063–1069. doi: 10.7623/syxb201809010

    YANG Zhen, MA Qingming, YANG Ningning, et al. Imaging response characteristic simulation of azimuthal electromagnetic resistivity while drilling based on orthogonal antenna[J]. Acta Petrolei Sinica, 2018, 39(9): 1063–1069. doi: 10.7623/syxb201809010
    [8]
    BITTAR M S, KLEIN J, RANDY B, et al. A new azimuthal deep reading resistivity tool for geosteering and advanced formation evaluation[R]. SPE 109971, 2007.
    [9]
    SEIFERT D, CHEMALI R, BITTAR M, et al. The link between resistivity contrast and successful geosteering[R]. SPWLA-2011-VVV, 2011.
    [10]
    SEYDOUX J, LEGENDRE E, MIRTO E, et al. Full 3D deep directional resistivity measurements optimize well placement and provide reservoir-scale imaging while drilling[R]. SPWLA-2014-LLLL, 2014.
    [11]
    HARTMANN A, VIANNA A, MAURER H M, et al.Verification testing of a new extra-deep azimuthal resistivity measurement[R]. SPWLA -2014-MM, 2014.
    [12]
    ANDERSON B I, BARBER T D, GIANZERO S C. The effect of crossbedding anisotropy on induction tool response[R]. SPWLA-2001-v42n2a6, 2001.
    [13]
    HAGIWARA T. A new method to determine horizontal-resistivity in anisotropic formations without prior knowledge of relative dip[R].SPWLA-1996-Q, 1996.
    [14]
    王昌学,周灿灿,储昭坦,等. 电性各向异性地层频率域电磁响应模拟[J]. 地球物理学报, 2006, 49(6): 1873–1883. doi: 10.3321/j.issn:0001-5733.2006.06.037

    WANG Changxue, ZHOU Cancan, CHU Zhaotan, et al. Modeling of electromagnetic responses in frequency domain to electrical anisotropic formations[J]. Chinese Journal of Geophysics, 2006, 49(6): 1873–1883. doi: 10.3321/j.issn:0001-5733.2006.06.037
    [15]
    WANG T, CHEMALI R E. Method of generating a deep resistivity image in LWD measurement: US7483793B2[P]. 2009-01-27[2019-02-17].
    [16]
    RABINOVICH M, LE F, LOFTS J, et al. Deep? how deep and what? the vagaries and myths of “look around” deep-resistivity measurements while drilling[R]. SPWLA-2011-NNN, 2011.
    [17]
    杨震,杨锦舟,韩来聚,等. 随钻方位电磁波界面探测性能分析[J]. 石油学报, 2016, 37(7): 930–938. doi: 10.7623/syxb201607012

    YANG Zhen, YANG Jinzhou, HAN Laiju, et al. Interface detection performance analysis of azimuthal electromagnetic while drilling[J]. Acta Petrolei Sinica, 2016, 37(7): 930–938. doi: 10.7623/syxb201607012
    [18]
    杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035–2043.

    YANG Zhen, YANG Jinzhou, HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035–2043.
    [19]
    OMERAGIC D, LI Qiming, CHOU L, et al. Deep directional electromagnetic measurement for optimal placement[R]. SPE 97045, 2005.
    [20]
    CALLEJA B, MARKET J, PITCHER J, et al. Multi-sensor Geosteering[R]. SPWLA-2010-82670, 2010.
    [21]
    杨锦舟. 随钻方位电磁波仪器界面预测影响因素分析[J]. 测井技术, 2014, 38(1): 39–45, 50.

    YANG Jinzhou. Analysis on the affecting factors of prediction interface with azimuthal LWD electromagnetic tool[J]. Well Logging Technology, 2014, 38(1): 39–45, 50.
    [22]
    CHEMALI R E, CAIRNS P, WANG T, et al. Method for signal enhancement in azimuthal propagation resistivity while drilling: US7375530B2[P]. 2008-05-20[2019-02-17].
  • Cited by

    Periodical cited type(5)

    1. 马天寿,向国富,桂俊川,贾利春,唐宜家. 基于物理约束的分布式神经网络三维地应力预测模型. 地球物理学报. 2024(08): 3211-3228 .
    2. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
    3. 吴百烈,彭成勇,武广瑷,楼一珊,尹彪. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例. 石油钻探技术. 2023(03): 105-112 . 本站查看
    4. 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用. 力学学报. 2022(08): 2235-2247 .
    5. 马天寿,向国富,石榆帆,桂俊川,张东洋. 基于双向长短期记忆神经网络的水平地应力预测方法. 石油科学通报. 2022(04): 487-504 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1066) PDF downloads (72) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return