Citation: | SUN Lin, YANG Wanyou, LI Xuguang, XIONG Peiqi. Research and Field Test of Deflagration Fracturing Technology in Offshore Oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91-96. DOI: 10.11911/syztjs.2019087 |
There are technical challenges in the safety and high-efficiency stimulation by blasting fracturing in offshore oilfields, and in response a high temperature, low firepower and low burning rate propellant has been developed, and in addition, we have established a deflagration fracturing simulation model. By utilizing safety string components and conducting safety calibration, a wellhead pressure relief method for the offshore oilfields has been formed. Through the enhanced software simulation and combined acidizing operation, it can improve the technical safety and enhance the stimulation effect, so as to form the deflagration fracturing technology for offshore oilfields. This technology has been tested in 8 wells in offshore oilfields. In those offshore fields, the peak pressure of the test well was 22.4–71.3 MPa. There was no safety problem in the string, and the average daily oil increment per well was up to 43.1 m3/d. The research showed that this deflagration fracturing technology had good adaptability in offshore oilfields, which is suitable for a variety of well conditions, with the advantages of safety control and high-efficiency stimulation technology in deflagration fracturing in offshore oilfield, it can improve the application safety and optimize the results from stimulation.
[1] |
路保平, 丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.
LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
|
[2] |
赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术, 2018, 46(4): 96–103.
ZHAO Guangyu. Study of a simulation of degree of fracturing production and resulting gas flow in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96–103.
|
[3] |
金军, 王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田, 2018, 25(3): 363–366.
JIN Jun, WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.
|
[4] |
秦发动, 吴晋军. 我院高能气体压裂技术十年发展综述[J]. 西安石油学院学报(自然科学版), 1997, 12(3): 14–17, 52.
QIN Fadong, WU Jinjun. Development of high energy gas fracturing (HEGF) in the past ten years[J]. Journal of Xi’an Petroleum Institute(Natural Science Edition), 1997, 12(3): 14–17, 52.
|
[5] |
刘发喜, 秦发动. 高能气体压裂施工工艺及其发展趋势[J]. 石油钻采工艺, 1993, 15(2): 63–69, 75.
LIU Faxi, QING Fadong. Construction technology and development tendency of high energy gas fracturing technique[J]. Oil Drilling & Production Technology, 1993, 15(2): 63–69, 75.
|
[6] |
蒲春生, 周少伟. 高能气体压裂最佳火药量理论计算[J]. 断块油气田, 2008, 15(1): 55–57.
PU Chunsheng, ZHOU Shaowei. Effective range of gunpowder amount in high energy gas fracture[J]. Fault-Block Oil & Gas Field, 2008, 15(1): 55–57.
|
[7] |
邵重斌, 樊学忠, 吴淑新. 高能气体压裂技术和油层物性关系的研究[J]. 火炸药学报, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028
SHAO Chongbin, FAN Xuezhong, WU Shuxin. Study on the relationship between the high energy gas-fracture and the physical properties of oil layer[J]. Chinese Journal of Explosives & Propellants, 2002, 25(2): 69–70, 13. doi: 10.3969/j.issn.1007-7812.2002.02.028
|
[8] |
张发展, 高志光. 双级高能气体压裂技术及应用效果分析[J]. 钻采工艺, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017
ZHANG Fazhan, GAO Zhiguang. Analysis of applied effects for two stage high energy gas fracturing[J]. Drilling & Production Technology, 2005, 28(5): 54–56. doi: 10.3969/j.issn.1006-768X.2005.05.017
|
[9] |
孙林, 宋爱莉, 易飞, 等. 爆压酸化技术在中国海上低渗油田适应性分析[J]. 钻采工艺, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17
SUN Lin, SONG Aili, YI Fei, et al. Analysis of deflagrate fracturing technology adaptability in China offshore low permeability of oilfield[J]. Drilling & Production Technology, 2016, 39(1): 60–62. doi: 10.3969/J.ISSN.1006-768X.2016.01.17
|
[10] |
蒲春生, 秦文龙, 邹鸿江, 等. 高能气体压裂增产措施中一氧化碳气体生成机制[J]. 石油学报, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022
PU Chunsheng, QIN Wenlong, ZOU Hongjiang, et al. Formation mechanism of carbon monoxide in high-energy gas fracturing[J]. Acta Petrolei Sinica, 2006, 27(6): 100–102. doi: 10.3321/j.issn:0253-2697.2006.06.022
|
[11] |
秦文龙, 蒲春生, 肖曾利, 等. 高能气体压裂中CO气生成及井口聚散规律研究[J]. 油田化学, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010
QIN Wenlong, PU Chunsheng, XIAO Zengli, et al. Formation and accumulation/disappearance of carbon monoxide around wellhead in course of high energy gas fracturing[J]. Oilfield Chemistry, 2007, 24(2): 127–130, 142. doi: 10.3969/j.issn.1000-4092.2007.02.010
|
[12] |
秦文龙, 蒲春生. 高能气体压裂中CO气体生成富集规律[J]. 石油钻采工艺, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013
QIN Wenlong, PU Chunsheng. CO gas generation and accumulation laws in high-energy gas fracturing[J]. Oil Drilling & Production Technology, 2007, 29(3): 42–44. doi: 10.3969/j.issn.1000-7393.2007.03.013
|
[13] |
吴飞鹏, 蒲春生, 陈德春, 等. 高能气体压裂合理装药量的设计与应用[J]. 石油钻探技术, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019
WU Feipeng, PU Chunsheng, CHEN Dechun, et al. Design and application of a reasonable charge of high-energy gas fracturing[J]. Petroleum Drilling Techniques, 2009, 37(1): 80–22. doi: 10.3969/j.issn.1001-0890.2009.01.019
|
[14] |
王爱华, 李璗, 赵锋洛, 等. 用高能气体压裂模型研究裂缝条数[J]. 断块油气田, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020
WANG Aihua, LI Dang, ZHAO Fengluo, et al. The study of number of fractures using high energy gas fracturing model[J]. Fault-Block Oil & Gas Field, 2000, 7(5): 56–59. doi: 10.3969/j.issn.1005-8907.2007.05.020
|
[15] |
吴晋军, 廖红伟, 张杰. 水平井液体药高能气体压裂技术试验应用研究[J]. 钻采工艺, 2007, 30(1): 51–53.
WU Jinjun, LIAO Hongwei, ZHANG Jie. Study and application of liquid power high energy gas fracturing technology in horizontal well[J]. Drilling & Production Technology, 2007, 30(1): 51–53.
|
[16] |
孙林, 黄波, 熊培祺. 爆燃压裂起裂模型常见问题分析与修正[J]. 中国海上油气, 2019, 31(1): 133–138.
SUN Lin, HUANG Bo, XIONG Peiqi. Common problems analysis and correction of deflagration fracturing crack initiation model[J]. China Offshore Oil and Gas, 2019, 31(1): 133–138.
|
[17] |
黄波, 熊培祺, 孙林. 海上砂岩油藏爆燃压裂数值模拟技术研究[J]. 中国科技论文, 2018, 13(11): 1317–1324.
HUANG Bo, XIONG Peiqi, SUN Lin. Numerical simulation technology of deflagration fracturing in offshore sandstone reservoir[J]. China Sciencepaper, 2018, 13(11): 1317–1324.
|
[18] |
孙林, 杨万有, 易飞, 等. 筛管完井爆燃压裂技术可行性研究[J]. 特种油气藏, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031
SUN Lin, YANG Wanyou, YI Fei, et al. Feasibility research on liner-completion deflagration fracturing technique[J]. Special Oil & Gas Reservoirs, 2017, 24(4): 161–165. doi: 10.3969/j.issn.1006-6535.2017.04.031
|
[19] |
张杰, 黄利平, 周际永, 等. 筛管完井高能气体压裂模拟实验研究[J]. 钻采工艺, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21
ZHANG Jie, HUANG Liping, ZHOU Jiyong, et al. Simulation study on high energy gas fracturing in screen completed wells[J]. Drilling & Production Technology, 2018, 41(4): 66–68. doi: 10.3969/J.ISSN.1006-768X.2018.04.21
|
1. |
陈浩,孙文常,邹顺良. FAST阵列仪器三相流产出剖面测试技术应用研究. 江汉石油职工大学学报. 2024(01): 23-25+32 .
![]() | |
2. |
黄卫国. 涪陵地区页岩气易碎地层随钻识别研究. 江汉石油职工大学学报. 2024(03): 20-23 .
![]() | |
3. |
商永涛,林新宇,李相亮,李辉. 基于机器学习的压裂参数优化方法研究及应用. 石油化工应用. 2022(08): 33-38 .
![]() | |
4. |
李红岩,王鹏涛,郭世炎,刘斌,张献喻,赵宇璇. 水基钻井液用新型页岩抑制剂的制备及性能研究. 当代化工. 2021(02): 418-421 .
![]() | |
5. |
舒志国,刘莉,梁榜,陆亚秋,郑爱维,包汉勇. 基于物质平衡原理的页岩气井产能评价方法. 天然气地球科学. 2021(02): 262-267 .
![]() | |
6. |
谭判,张祥,李明军,刘斌,蒋勇兵,蔡健博. 长水平段页岩气井旋转导向随钻技术应用试验. 江汉石油职工大学学报. 2020(01): 52-54 .
![]() | |
7. |
陈四平,谭判,石文睿,赵红燕. 涪陵页岩气优质储层测井综合评价方法. 石油钻探技术. 2020(04): 131-138 .
![]() | |
8. |
胡琴,李志强,任航. 模糊正交法在弧形盘式齿破岩性能评价中的应用. 断块油气田. 2019(03): 389-393 .
![]() |