WANG Tao, SHEN Feng, ZHAN Zhuanying, MA Zhenfeng, LIU Yun, HOU Yunyi. The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082
Citation: WANG Tao, SHEN Feng, ZHAN Zhuanying, MA Zhenfeng, LIU Yun, HOU Yunyi. The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 40-48. DOI: 10.11911/syztjs.2019082

The Application of High-Strength Micro-Elastic Cement Slurry in the Tight Oil Horizontal Wells of the Yanchang Oilfield

More Information
  • Received Date: October 18, 2018
  • Revised Date: June 19, 2019
  • Available Online: August 25, 2019
  • In order to improve the sealing ability of the annulus and ensure the multi-stage fracture-network fracturing development effect of tight oil horizontal wells in Yanchang Oilfield, the cement slurry had been functionally modified. Combined with the characteristics of tight oil reservoirs in the south part of this oilfield, horizontal well casing program and the requirements of multi-stage fracture-network fracturing on cement slurry properties, a casing-cement ring-formation force model was established, and the relationship chart between the Young’s modulus of the cement paste and the interfacial pressure was obtained. The particle size and surface treatment of styrene-butadiene rubber powder were optimized, and the high-strength micro-elastic agent was prepared by compounding formamide and inorganic salts, supplemented by other additives. After that, it was possible to form the high-strength micro-elastic cement slurry satisfying the requirements of this chart. The study found that the lower the Young's modulus of the hardened cement, the larger the Young's modulus of the formation, the lower the fracturing pressure and the smaller the hole enlargement rate, the lower the required compressive strength of the cement paste that met the requirements of annulus sealing would be. The developed cement slurry had perfect high-strength micro-elastic properties. Compared with the blank samples, the compressive strength was 51.8% higher, the Young's modulus was 10.5% lower, and the anti-breaking/tension strength was 75.0% higher. The cement slurry had been applied in more than 10 wells in the south part of the Yanchang Oilfield. The qualified rate of cementing quality in the horizontal section was over 95%, and no channeling occurred in the staged fracturing. The study results showed that the high-strength micro-elastic cement slurry could improve the post-fracturing sealing performance of tight oil horizontal wells in the Yanchang Oilfield, and demonstrated potential for widespread adoption.

  • [1]
    崔宝文,林铁锋,董万百,等. 松辽盆地北部致密油水平井技术及勘探实践[J]. 大庆石油地质与开发, 2014, 33(5): 16–22. doi: 10.3969/J.ISSN.1000-3754.2014.05.003

    CUI Baowen, LIN Tiefeng, DONG Wanbai, et al. Horizontal well techniques and their exploration practices in the tight oil reservoirs in north Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 16–22. doi: 10.3969/J.ISSN.1000-3754.2014.05.003
    [2]
    钟文力,洪少青,吕聪,等. 页岩气水平井固井技术难点与对策浅析[J]. 非常规油气, 2015, 2(2): 69–72. doi: 10.3969/j.issn.2095-8471.2015.02.014

    ZHONG Wenli, HONG Shaoqing, LYU Cong, et al. Difficulties and countermeasures for shale gas horizontal well cementing[J]. Unconventional Oil & Gas, 2015, 2(2): 69–72. doi: 10.3969/j.issn.2095-8471.2015.02.014
    [3]
    刘伟,陶谦,丁士东. 页岩气水平井固井技术难点分析与对策[J]. 石油钻采工艺, 2012, 34(3): 40–43.

    LIU Wei, TAO Qian, DING Shidong. Difficulties and countermeasures for cementing technology of sale gas horizontal well[J]. Oil Drilling & Production Technology, 2012, 34(3): 40–43.
    [4]
    齐奉忠,杜建平. 哈里伯顿页岩气固井技术及对国内的启示[J]. 非常规油气, 2015, 2(5): 77–82. doi: 10.3969/j.issn.2095-8471.2015.05.014

    QI Fengzhong, DU Jianping. Halliburton shale gas well cementing technology and its enlightenment to domestic gas industry[J]. Unconventional Oil & Gas, 2015, 2(5): 77–82. doi: 10.3969/j.issn.2095-8471.2015.05.014
    [5]
    SALEHI R, PAIAMAN A M. A novel cement slurry design applicable to horizontal well conditions[J]. Petroleum & Coal, 2009, 51(4): 270–276.
    [6]
    李伟,王涛,王秀玲,等. 陆相页岩气水平井固井技术: 以延长石油延安国家级陆相页岩气示范区为例[J]. 天然气工业, 2014, 34(12): 106–112. doi: 10.3787/j.issn.1000-0976.2014.12.015

    LI Wei, WANG Tao, WANG Xiuling, et al. Cementing technology for horizontal wells of terrestrial shale gas: a case study of the Yan'an national terrestrial shale gas E&P pilot area[J]. Natural Gas Industry, 2014, 34(12): 106–112. doi: 10.3787/j.issn.1000-0976.2014.12.015
    [7]
    李建山. 泾河油田水平井固井难点与对策研究[J]. 石油钻探技术, 2017, 45(6): 19–23.

    LI Jianshan. Challenges and countermeasures of well cementing operations for horizontal wells in the Jinghe Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 19–23.
    [8]
    胡德高,刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018, 40(1): 20–24. doi: 10.11781/sysydz201801020

    HU Degao, LIU Chao. Geological factors of well fracability in Fuling Shale Gas Field, Sichuan Basin[J]. Petroleum Geology and Experiment, 2018, 40(1): 20–24. doi: 10.11781/sysydz201801020
    [9]
    李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
    [10]
    许红林,张智,施太和,等. 压力和温度共同作用下的水泥环应力分析[J]. 石油钻探技术, 2014, 42(6): 45–48.

    XU Honglin, ZHANG Zhi, SHI Taihe, et al. Stress analysis of the cement sheath under both pressure and temperature[J]. Petroleum Drilling Techniques, 2014, 42(6): 45–48.
    [11]
    张军涛,赵习森,王卫刚,等. 水平井体积压裂技术在黄陵致密油区的研究和实践[J]. 非常规油气, 2018, 5(3): 84–87, 97. doi: 10.3969/j.issn.2095-8471.2018.03.014

    ZHANG Juntao, ZHAO Xisen, WANG Weigang, et al. The research and practice of horizontal well volume fracturing technology in Huangling oil region[J]. Unconventional Oil & Gas, 2018, 5(3): 84–87, 97. doi: 10.3969/j.issn.2095-8471.2018.03.014
    [12]
    谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009

    TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Drilling Petroleum Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
    [13]
    韩福彬,孔凡军,姜宏图,等. 微膨增韧胶乳防气窜水泥浆的实验研究[J]. 钻井液与完井液, 2008, 25(5): 52–53, 56. doi: 10.3969/j.issn.1001-5620.2008.05.018

    HAN Fubin, KONG Fanjun, JIANG Hongtu, et al. Laboratory studies on a gas-check cement slurry[J]. Drilling Fluid & Completion Fluid, 2008, 25(5): 52–53, 56. doi: 10.3969/j.issn.1001-5620.2008.05.018
    [14]
    李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025

    LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
    [15]
    路沙沙,麻凤海,邓飞. 橡胶颗粒掺量、粒径影响橡胶混凝土性能的试验分析[J]. 硅酸盐通报, 2014, 33(10): 2477–2483.

    LU Shasha, MA Fenghai, DENG Fei. Experimental analysis of crumb rubber concrete performance caused by content and grain diameter of rubber[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2477–2483.
    [16]
    额日德木,王海龙,王萧萧,等. 表面改性废旧轮胎橡胶粉对水泥胶砂力学性能的影响[J]. 中国科技论文, 2015, 33(1): 73–77. doi: 10.3969/j.issn.2095-2783.2015.01.017

    E Ri De Mu, WANG Hailong, WANG Xiaoxiao, et al. Experimental study of the effect of surface modified waste tire rubber powder on the mechanical properties of cement mortar[J]. China Sciencepaper, 2015, 33(1): 73–77. doi: 10.3969/j.issn.2095-2783.2015.01.017
    [17]
    许桂莉,杜华平,王碧,等. 油井水泥浆促凝剂体系的室内研究[J]. 精细石油化工进展, 2007, 8(10): 12–14. doi: 10.3969/j.issn.1009-8348.2007.10.004

    XU Guili, DU Huaping, WANG Bi, et al. Lab study of accelerating agent for oil well cement[J]. Advances in Fine Petrochemicals, 2007, 8(10): 12–14. doi: 10.3969/j.issn.1009-8348.2007.10.004
    [18]
    陕西延长石油(集团)有限责任公司研究院.一种低温早强增韧水泥浆及其制备方法: CN201510979530.X[P].2016-05-11.

    Research Institute of Yanchang Petroleum (Group) Co., Ltd. One kind of early strength toughening cement slurry at low temperature and its preparation method: CN201510979530.X[P]. 2016-05-11.
    [19]
    刘小利. 储气库井柔性水泥浆体系适应性评价实验[J]. 钻采工艺, 2016, 39(3): 11–14. doi: 10.3969/J.ISSN.1006-768X.2016.03.04

    LIU Xiaoli. Adaptability evaluation experiment of flexible cement slurry system in gas storage well[J]. Drilling & Production Technology, 2016, 39(3): 11–14. doi: 10.3969/J.ISSN.1006-768X.2016.03.04
    [20]
    李明,杨雨佳,郭小阳. 碳纤维增强油井水泥石的力学性能[J]. 复合材料学报, 2015, 32(3): 782–788.

    LI Ming, YANG Yujia, GUO Xiaoyang. Mechanical properties of carbon fiber reinforced oil well cement composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 782–788.
    [21]
    莫继春,李杨,卢东红,等. 霍布金森水泥石动态力学性能与射孔验窜试验装置[J]. 钻井液与完井液, 2004, 21(6): 8–11. doi: 10.3969/j.issn.1001-5620.2004.06.003

    MO Jichun, LI Yang, LU Donghong, et al. Instruments for cement stone dynamics properties and perforating channeling testing based on Hopkinson Spill Pressure Bar[J]. Drilling Fluid & Completion Fluid, 2004, 21(6): 8–11. doi: 10.3969/j.issn.1001-5620.2004.06.003
  • Related Articles

    [1]YANG Kunpeng, LI Pengxiao, AO Kangwei, ZHANG Tianyi, XIA Yuanbo, HOU Wei. Ultra-Low Density and Low-Friction Cement Slurry Cementing Technologies in Long Sealing Sections of Fuman Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(6): 64-70. DOI: 10.11911/syztjs.2023060
    [2]HE Licheng. A Cementing Technology for Horizontal Shale Oil Wells in Shahejie Formation of Shengli Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 45-50. DOI: 10.11911/syztjs.2022062
    [3]LI Wandong. Cementing Technology Applied in the Parahuacu Oilfield of Ecuador[J]. Petroleum Drilling Techniques, 2021, 49(1): 74-80. DOI: 10.11911/syztjs.2020109
    [4]LU Peiqing, SANG Laiyu, XIE Shaoai, GAO Yuan, ZHANG Jiaying, KANG Xuliang. Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52-58. DOI: 10.11911/syztjs.2018141
    [5]XIONG Min. Origin Analysis and Elimination of the S-Shaped Strength Development Curve of Cement Slurry[J]. Petroleum Drilling Techniques, 2018, 46(3): 39-43. DOI: 10.11911/syztjs.2018064
    [6]WEI Hangxin, XU Jianning, ZHAO Yajie, HUANG Hua, XI Wenkui. Optimization of Oil Production Parameters of Rod Pump for Low-Productivity Wells in Ultra-Low Permeability and Tight Oil Reservoirs[J]. Petroleum Drilling Techniques, 2017, 45(6): 83-87. DOI: 10.11911/syztjs.201706015
    [7]LIU Yun, WANG Tao, YU Xiaolong, NIU Meng. Cementation Technology for Low-Pressure Formations Susceptible to Lost Circulation in Western Area of the Yanchang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(4): 53-58. DOI: 10.11911/syztjs.201704009
    [8]Wang Xiaojing, Kong Xiangming, Zeng Min, Xu Chunhu, Zhao Zhiheng. Laboratory Research on a New Styrene Acrylic Latex Cement Slurry System[J]. Petroleum Drilling Techniques, 2014, 42(2): 80-84. DOI: 10.3969/j.issn.1001-0890.2014.02.016
    [9]Sui Mei. Technical Difficulties and Countermeasures in Cementing of Deep Exploration Wells in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 73-79. DOI: 10.3969/j.issn.1001-0890.2013.03.014
  • Cited by

    Periodical cited type(4)

    1. 刘华治,孙长健,寇国军. 硬硅钙石晶须对高温下油井水泥强度的影响. 合成化学. 2024(04): 352-359+368 .
    2. 杨燕,李路宽,朱宽亮,冯福平,刘圣源,韩旭. 稠油热采硅酸盐水泥抗高温技术研究进展. 科学技术与工程. 2022(01): 39-49 .
    3. 邹双,冯明慧,张天意,邹建龙,曾建国,赵宝辉. 多尺度纤维韧性水泥浆体系研究与应用. 石油钻探技术. 2020(06): 40-46 . 本站查看
    4. 张弛,陈小旭,李长坤,王瑜,于永金,丁志伟. 抗高温硅酸盐水泥浆体系研究. 钻井液与完井液. 2017(05): 62-66 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1610) PDF downloads (59) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return