YANG Xu, LI Gao, MENG Yingfeng, LIU Lin. Quantitative Evaluation Model of Water Blocking Damage in Low Permeability Gas Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 101-106. DOI: 10.11911/syztjs.2019008
Citation: YANG Xu, LI Gao, MENG Yingfeng, LIU Lin. Quantitative Evaluation Model of Water Blocking Damage in Low Permeability Gas Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 101-106. DOI: 10.11911/syztjs.2019008

Quantitative Evaluation Model of Water Blocking Damage in Low Permeability Gas Reservoirs

More Information
  • Received Date: September 11, 2018
  • Revised Date: November 25, 2018
  • Available Online: January 06, 2019
  • In this study, the goal was to quantitatively evaluate the potential water locking damage in low permeability gas reservoirs. To do so, a quantitative evaluation model for water locking damage in low permeability gas reservoirs was established based on the relative permeability and starting pressure gradient models. In the doing so, we analyzed the influences of water locking damage depth, starting pressure gradient and stress sensitivity on the water blocking damage degree. The analysis results suggested that the predicted results are better matched with the data of water locking damage experiment in tight sandstone. The greater the depth of water locking damage, the more serious the potential water locking damage; the larger the fluid starting pressure gradient, the more difficult for the liquid phase to cleanup. Herethe fluid cleanup efficiency could be improved by adding surfactant. A cleanup differential pressure is beneficial to liquid phase cleanup, while stress sensitivity may exaggerate the water locking damage, especially when the starting pressure gradient is low. Studies showed that water locking damage is the synergistic effect of reduced gas phase relative permeability caused by water phase retention and reduced absolute permeability caused by stress sensitivity, and the reasonably determined cleanup differential pressure is conducive to alleviating the water locking damage in low permeability gas reservoirs.

  • [1]
    赵宏波, 贾进孝, 孟令涛, 等. 一种新型降水锁洗井液NDF-1的性能评价及现场试验[J]. 石油钻探技术, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016

    ZHAO Hongbo, JIA Jinxiao, MENG Lingtao, et al. Performance evaluation and field application of a novel water lock reducing flushing fluid DNF-1[J]. Petroleum Drilling Techniques, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016
    [2]
    YANG Xu, MENG Yingfeng, SHI Xiangchao, et al. Influence of porosity and permeability heterogeneity on liquid invasion in tight gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 169–177 doi: 10.1016/j.jngse.2016.11.046
    [3]
    韩成,黄凯文,韦龙贵,等. 海上低渗储层防水锁强封堵钻井液技术[J]. 钻井液与完井液, 2018, 35(5): 67–71

    HAN Cheng, HUANG Kaiwen, WEI Longgui, et al. A drilling fluid with water block preventive capacity and strong plugging capacity for offshore low permeability reservoir drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(5): 67–71
    [4]
    杨旭, 孟英峰, 李皋, 等. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016

    YANG Xu, MENG Yingfeng, LI Gao, et al. Productivity analysis of tight sandstone gas reservoirs considering water blocking damage[J]. Natural Gas Geoscience, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016
    [5]
    韦青, 李治平, 白瑞婷, 等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019
    [6]
    唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm

    TANG Hongming, ZHU Baiyu, WANG Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. Scientia Sinica (Technologica), 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm
    [7]
    唐洪明, 徐诗雨, 王茜, 等. 克拉苏气田超致密砂岩气储层水锁损害[J]. 断块油气田, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023

    TANG Hongming, XU Shiyu, WANG Xi, et al. Water blocking damage of hyper-tight sandstone gas reservoir in Kelasu Gas Field[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023
    [8]
    BENNION D B, THOMAS F B, BIETZ R F, et al. Water and hydrocarbon phase trapping in porous media-diagnosis, prevention and treatment[J]. Journal of Canadian Petroleum Technology, 1996, 35(10): 29–36
    [9]
    DAVIS B B J, WOOD W D. Maximizing economic return by minimizing or preventing aqueous phase trapping during completion and stimulation operations[R]. SPE 90170, 2004.
    [10]
    YOU Lijun, KANG Yili. Integrated evaluation of water phase trapping damage potential in tight gas reservoirs[R]. SPE 122034, 2009.
    [11]
    SABOORIAN-JOOYBARI H, POURAFSHARY P. Potential severity of phase trapping in petroleum reservoirs: an analytical approach to prediction[R]. SPE 183631, 2016.
    [12]
    王茜,王双威,唐胜蓝,等. 基于致密砂岩气藏初始含水饱和度的水锁伤害评价[J]. 钻井液与完井液, 2017, 34(6): 41–45 doi: 10.3969/j.issn.1001-5620.2017.06.008

    WANG Xi, WANG Shuangwei, TANG Shenglan, et al. Permeability impairment by water block in tight sandstone gas reservoirs with Initial water saturation[J]. Drilling Fluid & Completion Fluid, 2017, 34(6): 41–45 doi: 10.3969/j.issn.1001-5620.2017.06.008
    [13]
    蒋官澄, 王晓军, 关键, 等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014

    JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014
    [14]
    张益, 李军刚, 佟晓华, 等. 基于神经网络信息融合技术预测气藏水锁[J]. 特种油气藏, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029

    ZHANG Yi, LI Jungang, TONG Xiaohua, et al. Prediction of water lock in gas reservoirs based on neural network information fusion[J]. Special Oil & Gas Reservoirs, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029
    [15]
    PRADA A, CIVAN F. Modification of Darcy′s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering, 1999, 22(4): 237–240 doi: 10.1016/S0920-4105(98)00083-7
    [16]
    DACY J M. Core tests for relative permeability of unconventional gas reservoirs[R]. SPE 135427, 2010.
    [17]
    ZENG Baoquan, CHENG Linsong, HAO Fei. Experiment and mechanism analysis on threshold pressure gradient with different fluids[R]. SPE 140678, 2010.
    [18]
    游利军, 石玉江, 张海涛, 等. 致密砂岩气藏水相圈闭损害自然解除行为研究[J]. 天然气地球科学, 2013, 24(6): 1214–1219 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201306015

    YOU Lijun, SHI Yujiang, ZHANG Haitao, et al. Spontaneous removal behavior of water phase trapping damage in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2013, 24(6): 1214–1219 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201306015
    [19]
    朱华银, 徐轩, 安来志, 等. 致密气藏孔隙水赋存状态与流动性实验[J]. 石油学报, 2016, 37(2): 230–236 doi: 10.3969/j.issn.1001-8719.2016.02.002

    ZHU Huayin, XU Xuan, AN Laizhi, et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2): 230–236 doi: 10.3969/j.issn.1001-8719.2016.02.002
    [20]
    MO S Y, HE S L, LEI G, et al. Effect of the drawdown pressure on the relative permeability in tight gas: a theoretical and experimental study[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 264–271 doi: 10.1016/j.jngse.2015.03.034
    [21]
    李海波. 岩心核磁共振可动流体T2截止值实验研究[D]. 北京: 中国科学院渗流流体力学研究所, 2008: 20-24.

    LI Haibo. Core experimental study of NMR T2 cutoff value[D]. Beijing: Chinese Academy of Sciences, Institute of Porous Flow and Fluid Mechanics, 2008: 20-24.
  • Cited by

    Periodical cited type(2)

    1. 周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 . 本站查看
    2. 袁永文,张西峰,李宏伟,胡春,宁朝华,杨红刚,程严军. 有缆式第四代智能分层注水技术优化及现场应用. 粘接. 2024(07): 117-120 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (12278) PDF downloads (40) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return