XIE Xiaoyong, HUANG Min. Equivalent Capillary-Based Liquid Phase Invasion Model for Low Permeability Gas Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 107-111. DOI: 10.11911/syztjs.2019007
Citation: XIE Xiaoyong, HUANG Min. Equivalent Capillary-Based Liquid Phase Invasion Model for Low Permeability Gas Reservoirs[J]. Petroleum Drilling Techniques, 2019, 47(1): 107-111. DOI: 10.11911/syztjs.2019007

Equivalent Capillary-Based Liquid Phase Invasion Model for Low Permeability Gas Reservoirs

More Information
  • Received Date: August 04, 2018
  • Revised Date: November 26, 2018
  • Available Online: January 16, 2019
  • The goal of this study was to avoid formation damage by finding a better way to map the flow of fluids through pore networks in tight sandstones. In order to investigate the flow mechanism of liquid phase invasion in low permeability gas reservoirs from the microscopic scale, a pore network model of tight sandstone was established by using laser etching technology. In that way, the microscopic visualization flow experiment of liquid phase invasion was carried out, and the dynamic aqueous phase distribution in the pore network during the process and fluid flow back was analyzed. The liquid phase invasion microscopic flow model for low permeability gas reservoirs was established based on equivalent capillary beam, and the model was verified by aqueous phase self-absorption invasion experiment in tight sandstone. Experimental results showed that the rule of aqueous phase invasion in the pore network is similar to that of capillary force invasion. The liquid phase mainly flows through larger pores initially, and then advances through the throats communicating with the pores gradually; It is difficult for the aqueous phase in the smaller throat to flow back, which can hinder the flow of gas phase. The research suggested that viscous drag plays a dominant role in the invasion of aqueous phase in tight sandstone; the liquid phase can still invade the core under negative pressure difference. Further, the denser the rock, the greater the maximum invasion depth of aqueous phase would be. The established liquid phase invasion model will provide a theoretical reference in studying liquid phase invasion damage and protection mechanism of low permeability gas reservoirs.

  • [1]
    李皋, 蔡武强, 孟英峰, 等. 不同钻井方式对致密砂岩储层损害评价实验[J]. 天然气工业, 2017, 37(2): 69–76 http://d.old.wanfangdata.com.cn/Periodical/trqgy201702009

    LI Gao, CAI Wuqiang, MENG Yingfeng, et al. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs[J]. Natural Gas Industry, 2017, 37(2): 69–76 http://d.old.wanfangdata.com.cn/Periodical/trqgy201702009
    [2]
    杨旭, 孟英峰, 李皋, 等. 考虑水锁损害的致密砂岩气藏产能分析[J]. 天然气地球科学, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016

    YANG Xu, MENG Yingfeng, LI Gao, et al. Productivity analysis of tight sandstone gas reservoirs considering water blocking dama-ge[J]. Natural Gas Geoscience, 2017, 28(5): 812–818 http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201705016
    [3]
    蒋官澄, 王晓军, 关键, 等. 低渗特低渗储层水锁损害定量预测方法[J]. 石油钻探技术, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014

    JIANG Guancheng, WANG Xiaojun, GUAN Jian, et al. The quantitative prediction method of water blocking damage in low and extra-low permeability reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69–73 doi: 10.3969/j.issn.1001-0890.2012.01.014
    [4]
    蒋官澄, 张弘, 吴晓波, 等. 致密砂岩气藏润湿性对液相圈闭损害的影响[J]. 石油钻采工艺, 2014, 36(6): 50–54 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201406016

    JIANG Guancheng, ZHANG Hong, WU Xiaobo, et al. Effect of tight sandstone gas reservoir wettability on liquid traps damage[J]. Oil Drilling & Production Technology, 2014, 36(6): 50–54 http://d.old.wanfangdata.com.cn/Periodical/syzcgy201406016
    [5]
    张益, 李军刚, 佟晓华, 等. 基于神经网络信息融合技术预测气藏水锁[J]. 特种油气藏, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029

    ZHANG Yi, LI Jungang, TONG Xiaohua, et al. Prediction of water lock in gas reservoirs based on neural network information fusion[J]. Special Oil & Gas Reservoirs, 2011, 18(2): 102–103, 110 doi: 10.3969/j.issn.1006-6535.2011.02.029
    [6]
    韦青, 李治平, 白瑞婷, 等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019

    WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116 http://d.old.wanfangdata.com.cn/Periodical/syztjs201605019
    [7]
    LI Gao, REN Wenxi, MENG Yingfeng, et al. Micro-flow kinetics research on water invasion in tight sandstone reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 184–191 doi: 10.1016/j.jngse.2014.06.024
    [8]
    赵宏波, 贾进孝, 孟令涛, 等. 一种新型降水锁洗井液NDF–1的性能评价及现场试验[J]. 石油钻探技术, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016

    ZHAO Hongbo, JIA Jinxiao, MENG Lingtao, et al. Performance evaluation and field application of a novel water lock reducing flushing fluid DNF-1[J]. Petroleum Drilling Techniques, 2015, 43(6): 87–92 http://d.old.wanfangdata.com.cn/Periodical/syztjs201506016
    [9]
    唐洪明, 徐诗雨, 王茜, 等. 克拉苏气田超致密砂岩气储层水锁损害[J]. 断块油气田, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023

    TANG Hongming, XU Shiyu, WANG Xi, et al. Water blocking damage of hyper-tight sandstone gas reservoir in Kelasu Gas Field[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 541–545 http://d.old.wanfangdata.com.cn/Periodical/dkyqt201704023
    [10]
    徐新丽. 东风港油田特低渗透油藏微观孔隙结构及渗流特征试验研究[J]. 石油钻探技术, 2017, 45(2): 96–100 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702016

    XU Xinli. Experimental study on micro-pore structure and seepage characteristics of ultra-low permeability reservoirs in the Dongfeng-gang Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 96–100 http://d.old.wanfangdata.com.cn/Periodical/syztjs201702016
    [11]
    赖南君, 叶仲斌, 刘向君, 等. 低渗透致密砂岩气藏水锁损害室内研究[J]. 天然气工业, 2005, 25(4): 125–127 doi: 10.3321/j.issn:1000-0976.2005.04.040

    LAI Nanjun, YE Zhongbin, LIU Xiangjun, et al. In-house study on water locking damage of tight sand gas reservoirs with low permeability[J]. Natural Gas Industry, 2005, 25(4): 125–127 doi: 10.3321/j.issn:1000-0976.2005.04.040
    [12]
    刘建坤, 郭和坤, 李海波, 等. 低渗透储层水锁伤害机理核磁共振实验研究[J]. 西安石油大学学报(自然科学版), 2010, 25(5): 46–49, 53 doi: 10.3969/j.issn.1673-064X.2010.05.011

    LIU Jiankun, GUO Hekun, LI Haibo, et al. Experimental study on the water-blocking damage mechanism of low permeability reservoir by nuclear magnetic resonance[J]. Journal of Xi′an Shiyou University (Natural Science Edition), 2010, 25(5): 46–49, 53 doi: 10.3969/j.issn.1673-064X.2010.05.011
    [13]
    唐洪明, 朱柏宇, 王茜, 等. 致密砂岩气层水锁机理及控制因素研究[J]. 中国科学: 技术科学, 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm

    TANG Hongming, ZHU Baiyu, WANG Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir[J]. Scientia Sinica (Technologica), 2018, 48(5): 537–547 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201805008.htm
    [14]
    丁绍卿, 郭和坤. 应用核磁共振技术研究压裂液伤害机理[J]. 钻井液与完井液, 2006, 23(3): 60–62 doi: 10.3969/j.issn.1001-5620.2006.03.018

    DING Shaoqing, GUO Hekun. Research on the damage mechanism of fracturing fluids through nuclear magnetic resonance technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(3): 60–62 doi: 10.3969/j.issn.1001-5620.2006.03.018
    [15]
    汪传磊. 致密砂岩孔隙介质内水相侵入微观流动机理研究[D]. 成都: 西南石油大学, 2012.

    WANG Chuanlei. The study of microscopic flow mechanism of water invading tight sandstone porous media[D]. Chengdu: Southwest Petroleum University, 2012.
    [16]
    FRIES N, DREYER M. The transition from inertial to viscous flow in capillary rise[J]. Journal of Colloid and Interface Science, 2008, 327(1): 125–128 doi: 10.1016/j.jcis.2008.08.018
    [17]
    QUÉRÉ D. Inertial capillarity[J]. Europhysics Letters, 1997, 39(5): 533–538 doi: 10.1209/epl/i1997-00389-2
    [18]
    NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329–340 doi: 10.1306/10240808059
    [19]
    谢晓永. 致密砂岩气藏欠平衡钻井储层保护适应性评价体系研究[D]. 成都: 西南石油大学, 2010.

    XIE Xiaoyong. Study on formation protection suitability evaluation system of underbalanced drilling in tight sandstone gas reservoir[D]. Chengdu: Southwest Petroleum University, 2010.
  • Cited by

    Periodical cited type(2)

    1. 周军,史叶,梁光川,彭操. 分时电价下油田分压周期注水优化研究. 石油钻探技术. 2024(03): 106-111 . 本站查看
    2. 袁永文,张西峰,李宏伟,胡春,宁朝华,杨红刚,程严军. 有缆式第四代智能分层注水技术优化及现场应用. 粘接. 2024(07): 117-120 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (11399) PDF downloads (21) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return