Citation: | HAO Dilong, HE Xia, WANG Guorong, FANG Xing, LIAO Daisheng, FANG Haihui. Optimization of the Structural Design of the Integral Slip of a Soluble Bridge Plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69-75. DOI: 10.11911/syztjs.2018151 |
In order to improve the anchoring performance of the integral slip of a soluble bridge plug, the team took the design of the integral slip suitable for a ϕ95.0 mm soluble bridge plug as an example, and then proposed a structural optimization design.According to the results from fracture experiments and numerical simulation of the integral slip, when the groove length 1/2 and above reach tensile strength under the effect of axial force, the slip fracture opens.Based on this law, the structure of stress groove was optimized by a numerical simulation.The integral slip adopted the form of six stress grooves, the length, thickness and width of stress groove were 25.0 mm, 2.0 mm and 4.0 mm, respectively.The distance from the front end and back end was 25.0 mm and 10.0 mm, respectively.Under this structure, the breaking force of the slip was 72 kN, which met the technical requirements of the slip breaking force when the ϕ95.0 mm soluble bridge plug was sealed.Moreover, numerical simulations and fracture experiments both showed that the integral slip after structural optimization could avoid C-shaped openings, resulting in better pressure bearing capacity and better anchoring performance of the slip.The results also demonstrated that, after structural optimization design, the breaking force of the integral slip of soluble bridge plug experienced an obvious decrease.The integral slip is capable of avoiding a C-shaped opening, which can improve the anchoring performance.
[1] |
HAMMERLINDL D J.Movement, forces, and stresses associated with combination tubing strings sealed in packers[J].Journal of Petroleum Technology, 1977, 29(2):195-208. doi: 10.2118/5143-PA
|
[2] |
SHAHANI A R, SHARIFI S.Contact stress analysis and calculation of stress concentration factors at the tool joint of a drill pipe[J].Materials & Design, 2009, 30(9):3615-3621.
|
[3] |
LIN Z C.The strength analysis and structure optimization of packer slip based on ANSYS[J].Applied Mechanics and Materials, 2013, 423/424/425/426:1967-1971. http://www.scientific.net/AMM.423-426.1967
|
[4] |
CAI Maojia, CAO Yinping, WANG Xin, et al.Analysis of interaction between HTHP completion packer's slip and the casing wall[J].Applied Mechanics and Materials, 2013, 423-426:866-870. doi: 10.4028/www.scientific.net/AMM.423-426
|
[5] |
祝效华, 晁圣棋, 刘祖林, 等.基于试验和数值仿真的封隔器卡瓦结构优化[J].系统仿真学报, 2016, 28(11):2729-2735. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201611012
ZHU Xiaohua, CHAO Shengqi, LIU Zulin, et al.Structural optimization of packer slips based on experimental and numerical simulation[J].Journal of System Simulation, 2016, 28(11):2729-2735. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201611012
|
[6] |
刘景超, 王晓, 马认琦, 等.整体式卡瓦断裂压力的试验研究[J].钻采工艺, 2016, 39(4):67-69. doi: 10.3969/J.ISSN.1006-768X.2016.04.20
LIU Jingchao, WANG Xiao, MA Renqi, et al.Experimental study on fracture pressure of integral slips[J].Drilling & Production Technology, 2016, 39(4):67-69. doi: 10.3969/J.ISSN.1006-768X.2016.04.20
|
[7] |
王迪, 何世平, 张熹.封隔器卡瓦接触应力研究[J].实验力学, 2006, 21(3):351-356. doi: 10.3969/j.issn.1001-4888.2006.03.015
WANG Di, HE Shiping, ZHANG Xi. Study on contact stress of packer slips[J].Experimental Mechanics, 2006, 21(3):351-356. doi: 10.3969/j.issn.1001-4888.2006.03.015
|
[8] |
邓民敏.封隔器用整体式卡瓦设计原理与设计方法的研究[D].北京: 石油大学(北京), 1998: 47-52.
DENG Minmin.Study on the design principle and design method of integral slips for packers[D].Beijing: University of Petroleum(Beijing), 1998: 47-52.
|
[9] |
何霞, 李明, 王国荣, 等.悬挂封隔器卡瓦作用区段套管应力分布研究[J].应用数学和力学, 2017, 38(9):1021-1028. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201709006
HE Xia, LI Ming, WANG Guorong, et al.Study on the stress distribution of the casing section of the suspended packer slip section[J].Applied Mathematics and Mechanics, 2017, 38(9):1021-1028. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx201709006
|
[10] |
张俊亮, 刘汝福, 李丽云, 等.整体式卡瓦牙型结构优化及试验研究[J].石油机械, 2012, 40(6):83-86. http://www.cnki.com.cn/Article/CJFDTotal-SYJI201206021.htm
ZHANG Junliang, LIU Rufu, LI Liyun, et al.Optimization and experimental study of integral slips type[J].China Petroleum Machinery, 2012, 40(6):83-86, 97. http://www.cnki.com.cn/Article/CJFDTotal-SYJI201206021.htm
|
[11] |
喻冰, 赵维斌, 雷璐侨, 等.非金属桥塞镶齿卡瓦的有限元分析及优化[J].石油机械, 2013, 41(8):68-70, 75. doi: 10.3969/j.issn.1001-4578.2013.08.017
YU Bing, ZHAO Weibin, LEI Luqiao, et al.Finite element analysis and optimization of non-metallic bridge plug toothed slips[J].China Petroleum Machinery, 2013, 41(8):68-70, 75. doi: 10.3969/j.issn.1001-4578.2013.08.017
|
[12] |
马认琦, 孔学云, 鞠少栋, 等.海上完井封隔器新型锚定卡瓦咬入套管分析[J].石油机械, 2014, 42(9):65-68. doi: 10.3969/j.issn.1001-4578.2014.09.016
MA Renqi, KONG Xueyun, JU Shaodong, et al.Analysis of new anchoring slips of packer for offshore completion[J].China Petroleum Machinery, 2014, 42(9):65-68. doi: 10.3969/j.issn.1001-4578.2014.09.016
|
[13] |
高志华, 魏江兵, 张涔, 等.利用应变片测量金属弹性模量[J].物理与工程, 2017, 27(2):37-41, 46. doi: 10.3969/j.issn.1009-7104.2017.02.008
GAO Zhihua, WEI Jiangbing, ZHANG Cen, et al.Using strain gauge to measure elastic modulus of metals[J].Physics and Engineering, 2017, 27(2):37-41, 46. doi: 10.3969/j.issn.1009-7104.2017.02.008
|
[14] |
匡博.盘式制动器制动噪声有限元分析[D].长沙: 湖南大学, 2013: 11-12.
KUANG Bo.Finite element analysis of disc brakenoise[D].Changsha: Hunan University, 2013: 11-12.
|
[15] |
聂洪波.三点弯曲法测试硬质合金弹性模量[J].粉末冶金材料科学与工程, 2010, 15(6):606-610. doi: 10.3969/j.issn.1673-0224.2010.06.012
NIE Hongbo.Measurement of elastic modulus of cemented carbide by three-point bending[J].Materials Science and Engineering of Powder Metallurgy, 2010, 15(6):606-610. doi: 10.3969/j.issn.1673-0224.2010.06.012
|
[16] |
陈毅彬, 周建忠, 黄舒, 等.基于ABAQUS的激光板料成形的数值模拟研究[J].应用激光, 2007, 27(3):175-180. doi: 10.3969/j.issn.1000-372X.2007.03.003
CHEN Yibin, ZHOU Jianzhong, HUANG Shu, et al.Numerical simulation of laser sheet metal forming based on ABAQUS[J].Applied Laser, 2007, 27(3):175-180. doi: 10.3969/j.issn.1000-372X.2007.03.003
|
[1] | CUI Zhuang, HOU Bing. A Numerical Simulation for Damage Mechanical Behavior of Brazilian Splitting Test of Deep Shales[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228. DOI: 10.11911/syztjs.2024032 |
[2] | SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095 |
[3] | ZOU Longqing, HE Huaiyin, YANG Yadong, GONG Xinwei, XIAO Jianfeng, CHANG Bei. Numerical Simulation Study on the Migration Characteristics of Ball Sealers in Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 156-166. DOI: 10.11911/syztjs.2023093 |
[4] | YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069 |
[5] | PENG Zhenhua, ZHANG Yuan, DING Wen, WU Chao, SUN Bingyu. Design and Application of a Mechanical Double-Positioning Block Casing Collar Locator[J]. Petroleum Drilling Techniques, 2018, 46(6): 100-104. DOI: 10.11911/syztjs.2018136 |
[6] | YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018 |
[7] | Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020 |
[8] | Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013 |
[9] | Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005 |
[10] | Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018 |
1. |
翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 .
![]() | |
2. |
卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展. 油气藏评价与开发. 2024(04): 618-628 .
![]() | |
3. |
叶志权,肖雷,王丽峰,薛浩楠,王晗. 小井眼连续油管多簇射孔填砂分段压裂技术——以百口泉油田百1断块X井为例. 油气井测试. 2023(01): 33-37 .
![]() | |
4. |
李娜. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2023(07): 97-98 .
![]() | |
5. |
柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 .
![]() | |
6. |
张文康. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石化技术. 2022(12): 139-141 .
![]() | |
7. |
邹立萍,邹昌柏. 关于水平井压裂工艺技术现状及展望. 当代化工研究. 2021(10): 7-8 .
![]() | |
8. |
苗娟,黄兵,谢力,汤明. 高钢级套管段铣工具优化及性能评价. 特种油气藏. 2021(02): 163-170 .
![]() | |
9. |
李杉杉,孙虎,张冕,池晓明,刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石油钻探技术. 2021(04): 92-98 .
![]() | |
10. |
谢慧华,马青印,辛红伟,田相元,孔春岩,贺亚杰. 文留油田盐间油藏深部双层套管开窗侧钻技术. 断块油气田. 2021(05): 706-710 .
![]() | |
11. |
李海涛,罗红文,向雨行,安树杰,李颖,蒋贝贝,谢斌,辛野. DTS/DAS技术在水平井压裂监测中的应用现状与展望. 新疆石油天然气. 2021(04): 62-73 .
![]() |