LU Peiqing, SANG Laiyu, XIE Shaoai, GAO Yuan, ZHANG Jiaying, KANG Xuliang. Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52-58. DOI: 10.11911/syztjs.2018141
Citation: LU Peiqing, SANG Laiyu, XIE Shaoai, GAO Yuan, ZHANG Jiaying, KANG Xuliang. Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52-58. DOI: 10.11911/syztjs.2018141

Analysis of the Anti-Gas Channeling Effect and Weight Loss Law of Styrene-Acrylic Latex Cement Slurry

More Information
  • Received Date: April 12, 2018
  • Revised Date: November 13, 2018
  • Available Online: January 06, 2019
  • During the WOC of cement slurry, gas channeling in the annulus caused by its weight loss is one of the important factors leading to the sustained casing pressure (SCP). Understanding the weight loss modes and law of cement slurry is an important way to prevent gas intrusion in the annulus. Taking the styrene-acrylic latex anti-gas channeling cement slurry system as the research object, the weight loss test of cement slurry was carried out by means of pressure conduction precision measuring device, and the pressure change data of cement slurry under different latex dosage, temperature, gas pressure and simulated wellbore depth were measured, and the anti-gas channeling effect evaluation and weight loss law analysis were carried out. The test found that the styrene-acrylic latex could still effectively prevent gas channeling when the gas-bearing formation pressure (18 kPa) was higher than the bottom pressure of slurry column (12-16 kPa). In this case, the pressure dropped rapidly after this system formed a thixotropic or gelled structure. As the hydration reaction went on, the pressure decreased slowly, then the pressure of cement slurry dropped rapidly again before the thickening, and the dangerous time of gas channeling should appear near the first inflection point. Based on the research results, the anti-gas channeling performance of cement slurry could be evaluated to select the anti-gas channeling cement slurry system suitable for high-pressure gas wells, and such results could provide test basis for the establishment of cement slurry weight loss prediction model.

  • [1]
    刘崇建, 黄柏宗, 徐同台, 等.油气井注水泥理论与应用[M].北京: 石油工业出版社, 2001: 316-345.

    LIU Chongjian, HUANG Bozong, XU Tongtai, et al. Theory and application of cementing of oil and gas well[M]. Beijing: Petroleum Industry Press, 2001: 316-345.
    [2]
    CARTER G, SLAGLE K. A study of completion practices to minimize gas communication[J]. Journal of Petroleum Technology, 1972, 24(9): 1170–1174 doi: 10.2118/3164-PA
    [3]
    CROOK R A, HEATHMAN J. Predicting potential gas-flow rates to help determine the best cementing practices[J]. Drilling Contractor, 1998, November/December: 40–43
    [4]
    SABINS F L, TINSLEY J M, SUTTON D L. Transition time of cement slurries between the fluid and set states[J]. SPE Journal, 1982, 22(6): 875–882 doi: 10.2118/9285-PA
    [5]
    SABINS F L, SUTTON D L. The relationship of thickening time, gel strength, and compressive strength of oil well cements[J]. SPE Production Engineering, 1986, 1(2): 143–152 doi: 10.2118/11205-PA
    [6]
    步玉环,穆海朋,姜林甫,等. 水泥浆失重建模以及实验研究[J]. 钻井液与完井液, 2007, 24(6): 52–54 doi: 10.3969/j.issn.1001-5620.2007.06.014

    BU Yuhuan, MU Haipeng, JIANG Linfu, et al. Modeling and laboratory studies of cement slurry weight loss[J]. Drilling Fluid & Completion Fluid, 2007, 24(6): 52–54 doi: 10.3969/j.issn.1001-5620.2007.06.014
    [7]
    BANNISTER C E, LAWSON V M. Role of cement fluid loss in wellbore completion[R]. SPE 14433, 1985.
    [8]
    HARTOG J J, DAVIES D R, STEWART R B. An integrated approach for successful primary cementations[J]. Journal of Petro-leum Technology, 1983, 35(9): 1600–1610 doi: 10.2118/9599-PA
    [9]
    孙展利. 水泥浆在不同井斜的沉降失重和沉降–胶凝失重[J]. 天然气工业, 1998, 18(4): 55–58 doi: 10.3321/j.issn:1000-0976.1998.04.015

    SUN Zhanli. Settling weightlessness and settling jellification weightlessness of slurry under various hole deviations[J]. Natural Gas Industry, 1998, 18(4): 55–58 doi: 10.3321/j.issn:1000-0976.1998.04.015
    [10]
    SYKES R L, LOGAN J L. New technology in gas migration control[R]. SPE 16653, 1987.
    [11]
    ZHOU Desheng, WOJTANOWICZ A K. New model of pressure reduction to annulus during primary cementing[R]. SPE 59137, 2000.
    [12]
    郭小阳,刘崇建,谢应权,等. 大斜度及水平井中水泥浆的失重和气侵研究[J]. 西南石油学院学报, 1996, 18(2): 25–34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600833058

    GUO Xiaoyang, LIU Chongjian, XIE Yingquan, et al. Study of weightlessness and air cutting of cement slurry in highly derivated and horizontal well[J]. Journal of Southwest Petroleum Institute, 1996, 18(2): 25–34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600833058
    [13]
    LI Zichang, VANDENBOSSCHE J, IANNACCHIONE A, et al. Theory-based review of limitations with static gel strength in cement/matrix characterization[R]. SPE 178923, 2016.
    [14]
    汪晓静,孔祥明,曾敏,等. 新型苯丙胶乳水泥浆体系的室内研究[J]. 石油钻探技术, 2014, 42(2): 80–84 http://d.old.wanfangdata.com.cn/Periodical/syztjs201402016

    WANG Xiaojing, KONG Xiangming, ZENG Min, et al. Laboratory research on a new styrene acrylic latex cement slurry system[J]. Petroleum Drilling Techniques, 2014, 42(2): 80–84 http://d.old.wanfangdata.com.cn/Periodical/syztjs201402016
    [15]
    路飞飞,王永洪,刘云,等. 顺南井区高温高压防气窜尾管固井技术[J]. 钻井液与完井液, 2016, 33(2): 88–91 http://d.old.wanfangdata.com.cn/Periodical/zjyywjy201602019

    LU Feifei, WANG Yonghong, LIU Yun, et al. Anti-channeling HTHP Liner Cementing Technologies Used in Block Shunnan[J]. Drilling Fluid & Completion Fluid, 2016, 33(2): 88–91 http://d.old.wanfangdata.com.cn/Periodical/zjyywjy201602019
    [16]
    刘仍光,周仕明,陶谦,等. 胶乳对油井水泥水化产物和硬化浆体微结构的影响[J]. 电子显微学报, 2015, 34(3): 211–215 doi: 10.3969/j.issn.1000-6281.2015.03.006

    LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Influence of latex on the hydration products and microstructure of oil well cement pastes[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(3): 211–215 doi: 10.3969/j.issn.1000-6281.2015.03.006
    [17]
    朱海金,王恩合,王学成,等. 水泥浆防窜性能实验评价及其应用[J]. 天然气工业, 2013, 33(11): 79–85 doi: 10.3787/j.issn.1000-0976.2013.11.014

    ZHU Haijin, WANG Enhe, WANG Xuecheng, et al. Experimental evaluation of gas channeling prevention of cement slurries and its application[J]. Natural Gas Industry, 2013, 33(11): 79–85 doi: 10.3787/j.issn.1000-0976.2013.11.014
    [18]
    张兴国. 水泥浆网架结构胶凝悬挂失重机理研究[D]. 南充: 西南石油大学, 2002.

    ZHANG Xingguo. Study on weightlessness mechanisms of slurry suspension during cement gelation[D]. Nanchong: Southwest Petro-leum University, 2002.
    [19]
    程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报, 2016, 37(10): 1287–1292 doi: 10.7623/syxb201610009

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292 doi: 10.7623/syxb201610009
  • Related Articles

    [1]WANG Jinduo, WANG Yanbin, HE Ziqing, GAO Deli, ZENG Jing. Temperature and Pressure Coupling Field Distribution Law in Deepwater Drilling Wellbore under Gas Kick[J]. Petroleum Drilling Techniques, 2024, 52(6): 50-61. DOI: 10.11911/syztjs.2024108
    [2]ZHOU Jianping, YANG Zhanwei, XU Minjie, WANG Liwei, YAO Maotang, GAO Ying. Research and Field Tests of Weighted Fracturing Fluids with Industrial Calcium Chloride and Guar Gum[J]. Petroleum Drilling Techniques, 2021, 49(2): 96-101. DOI: 10.11911/syztjs.2021014
    [3]JING Shuai, XIAO Li, ZHANG Haolin, WANG Xi, ZHANG Feifei. A Method for Minimizing Annulus Pressure Loss by means of Hole Cleaning and Hydraulics Coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56-62. DOI: 10.11911/syztjs.2020009
    [4]HE Shiming, LIU Sen, ZHAO Zhuanling, TANG Ming, LI Heng, DENG Fuyuan. The Dynamic Laws of Overflow Intrusion in Fractured Formations[J]. Petroleum Drilling Techniques, 2018, 46(6): 26-32. DOI: 10.11911/syztjs.2018137
    [5]LI Daqi, ZENG Yijin, LIU Sihai, KANG Yili. Drilling Fluid Loss Model in Rough Fractures Based on Fractal Theory[J]. Petroleum Drilling Techniques, 2017, 45(4): 46-52. DOI: 10.11911/syztjs.201704008
    [6]CEN Xueqi, WU Xiaodong, WANG Lei, ZHENG Lei, GE Lei. A New Model for Calculating the Ideal Beam Counterbalance Weight for a Pumping Unit[J]. Petroleum Drilling Techniques, 2016, 44(2): 82-86. DOI: 10.11911/syztjs.201602014
    [7]Zhu Bing, Nie Yuzhi, Qiu Zailei, Wang Haoren, Chen Hongzhuang, Ma Peng. Research on Fluid Loss Additives of AMPS/DMAM/AA in Well Cementing[J]. Petroleum Drilling Techniques, 2014, 42(6): 40-44. DOI: 10.11911/syztjs.201406008
    [8]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [9]Zhang Dong, Li Aifen, Yao Jun, Si Zhimei. Law of Water Flooding in Vug-Fracture-Vug Medium[J]. Petroleum Drilling Techniques, 2012, 40(4): 86-91. DOI: 10.3969/j.issn.1001-0890.2012.04.017
    [10]Wang Lin, Lin Yongxue, Yang Xiaohua, Cai Lishan, Chai Long. Effects of Weighting Agent on Ultra-High Density Drilling Fluid’s Performance[J]. Petroleum Drilling Techniques, 2012, 40(3): 48-53. DOI: 10.3969/j.issn.1001-0890.2012.03.010

Catalog

    Article Metrics

    Article views (12160) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return